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Abstract

Multi-core chips are now commonplace in server, desktop, and even embedded sys-

tems; however, they create an inflection point for mainstream software development.

To benefit from the additional performance offered by multi-core chips, application

developers have to develop parallel programs and deal with cumbersome issues such

as synchronization tradeoffs and deadlock avoidance. In this setting, Transactional

Memory (TM) has surfaced as a promising technique to simplify shared-memory par-

allel programming.

Recent years have seen the proposals of several different TM systems; however,

most TM systems have been evaluated using microbenchmarks, which may not be

representative of any real-world behavior, or individual applications, which do not

stress a wide range of execution scenarios. To address this problem, I introduce the

Stanford Transactional Applications for Multi-Processing (STAMP), the first com-

prehensive benchmark suite for evaluating TM systems. STAMP consists of eight

benchmarks and represents several application domains, covers a wide range of trans-

actional execution cases, and ports easily to many types of TM systems.

Using STAMP, I evaluate TM implementations based on hardware (HTM) and

software (STM), and propose Signature-accelerated Transactional Memory (SigTM),

a new hybrid TM system that combines the advantages of HTM and STM. SigTM

uses small hardware signatures to accelerate the execution of software transactions,

and thus presents a high-performance, flexible, and low-cost design. Moreover, SigTM

is the first hybrid TM system to provide semantic guarantees between transactional

and non-transactional code blocks.
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Chapter 1

Introduction

Up till now, the performance of microprocessors has been continuously improving

thanks to advances in manufacturing technologies. In recent years, however, conven-

tional techniques for improving single-threaded performance have begun hitting fun-

damental limits. Designing increasingly deep and wide pipelines and increasing clock

frequencies lead to undesirable levels of power consumption [2, 15]. Moreover, the

traditional methods of exploiting instruction-level parallelism (such as out-of-order

execution and speculation) in uniprocessors have been almost fully exhausted [95].

In response, processor manufacturers have shifted to multiprocessor designs [36,

50,52,63,67,93]. By using a smaller and simpler processor core design and replicating

it many times on a single die, power requirements are reduced and a new opportunity

for performance, in the form of thread-level parallelism, is exposed. The burden of

achieving high performance has now been placed on software developers who must

face the arduous task of writing parallel programs to take advantage of multiprocessor

hardware.

1.1 The Difficulty of Parallel Programming

Writing programs to take advantage of thread-level parallelism on multiprocessors

involves creating several parallel tasks that need to synchronize and communicate

with each other. For shared memory systems, the coordination among parallel tasks

1



2 CHAPTER 1. INTRODUCTION

is commonly achieved via lock-based parallel programs. In this technique, locks are

used to provide mutual exclusion for shared memory accesses that are used for com-

munication among parallel tasks.

Unfortunately, parallel programming with locks is much more difficult than tra-

ditional sequential programming [47]. When programmers use locks, they must pick

between two undesirable choices. The first option is to use coarse-grain locks, where

large regions of code are indicated as critical sections. Adding coarse-grain locks to

a program is relatively straightforward; however, coarse-grain locks may not permit

high degrees of concurrency as instructions that could otherwise correctly execute

concurrently may be serialized. The second option that programmers have is to

use fine-grain locks, which entails placing lock so that the size of critical sections is

minimized. Smaller critical sections permit greater concurrency, but the inherently

greater number of locks in fine-grain schemes leads to higher complexity, which may

not even result in better performance. The higher program complexity also makes

it more likely for the code to have problems such as deadlock, convoying, or priority

inversion.

1.2 Transactional Memory

Transactional Memory (TM) [47] was created to simplify parallel programming and

relieve software developers from the difficulties associated with lock-based parallel

programming. With locks, programmers need to explicitly specify and manage the

synchronization among threads; however, with TM, programmers simply mark code

segments as transactions that should execute atomically and in isolation with respect

to other code, and the TM system manages the concurrency control for them.

All TM systems use either hardware-based or software-based approaches to imple-

ment the two basic TM mechanisms: data versioning and conflict detection. Hard-

ware TM (HTM) systems use hardware caches for data versioning and hook into

cache coherence protocols for conflict detection [11, 41, 65, 72]. Since the processor

can transparently track loads and stores for the transactional bookkeeping, HTMs

have low transactional overhead; however, the complexity and cost of redesigning



1.2. TRANSACTIONAL MEMORY 3

the caches and coherence protocols to support TM can be significant. In contrast,

Software TM (STM) adds instrumentation code (read and write barriers) to interact

with an STM software library [32,43,46,59,80]. Since STMs are software-based, they

are more cost-effective and flexible than HTMs; however, the software barriers and

libraries incur much greater overhead than hardware-based solutions. Ideally, a TM

system should be a hybrid combination of hardware and software to combine the best

of HTM and STM designs.

Another important difference between HTM and STM is in their semantics. To

execute all code sequences predictably, a TM system must support strong isolation,

which guarantees that code in transactions runs isolated from both transactional and

non-transactional code. HTMs naturally have strong isolation as the processor sees

all memory accesses. On the other hand, STMs must add extra instrumentation code

on non-transactional loads and stores to provide strong isolation. Since this is an

additional source of overhead, high-performance STMs usually sacrifice strong isola-

tion, which allows some unpredictable code execution scenarios. A better solution,

however, would be to add strong isolation to STM by using hardware. This would

present a solution that retains the cost-effectiveness and flexibility of STMs while

offering predictable semantics and high performance.

Although many HTM and STM systems have been proposed, the tools and work-

loads are still missing to analyze and compare the proposals. Most TM systems have

been evaluated using either microbenchmarks or single applications. Unfortunately,

microbenchmarks may not be representative of any real-world behavior, and indi-

vidual applications do not stress a wide range of execution scenarios. To provide

a thorough analysis of TM systems, a benchmark suite that covers a wide range of

transactional scenarios (e.g., varying sizes of read and write sets, differing amounts

of contention, etc.) is needed. With these workloads, the TM community can better

understand the tradeoffs between HTM and STM and design a hybrid TM system

that combines the advantages of each.
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1.3 Contributions

In this dissertation, I present the design of a new effective hybrid transactional mem-

ory system. Specifically, I:

• Create the Stanford Transactional Applications for Multi-Processing (STAMP),

a new benchmark suite for transactional memory systems. I describe the algo-

rithms and data structures, the parallelization strategy, and the use of transac-

tions in each of the eight STAMP applications.

• Provide a transactional characterization of the STAMP applications. In par-

ticular, I measure the transaction length, the sizes of the read and write sets,

the amount of time spent in transactions, and the average number of retries per

transaction. This analysis quantitatively demonstrates that STAMP covers a

wide range of transactional scenarios.

• Demonstrate the usefulness of STAMP for TM research by using it to analyze

the performance of two different HTMs and two different STMs. The conven-

tional wisdom in the TM community has been that eager versioning leads to

better performance than lazy versioning and increasing amounts of hardware

support for TM lead to significant performance improvements. Using STAMP,

I show that these generalizations are invalid in certain cases and discuss the

technical issues behind them. With STAMP, I analyze the tradeoffs between

HTM and STM, and motivate a hybrid hardware and software TM design.

• Describe the hardware and software components of SigTM, my new hybrid

transactional memory system that uses hardware signatures for read set and

write set tracking. SigTM improves the performance of software transactions

while providing strong isolation guarantees.

• Analyze the SigTM design by using STAMP. I show that SigTM effectively

accelerates software transactions and approaches the performance of HTMs at

a much lower hardware cost.
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1.4 Organization

The remainder of this dissertation is organized as follows. Chapter 2 introduces Trans-

actional Memory, explains basic TM concepts, and highlights some TM designs. In

Chapter 3, I explain why previous approaches to evaluating TM have been inadequate,

and I introduce the STAMP benchmark suite to address this problem. A quantitative

analysis of STAMP then follows in Chapter 4. Chapter 5 introduces SigTM, my new

hybrid TM design that combines the high performance and predictable semantics

of HTMs with the flexibility and cost-effectiveness of STMs. Next, Chapter 6 uses

STAMP to present a quantitative analysis of the SigTM design. Finally, Chapter 7

concludes this dissertation.
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Chapter 2

Transactional Memory

Multi-core chips are now commonplace in server, desktop, and even embedded sys-

tems. However, multi-core chips create an inflection point for mainstream software

development. To benefit from the increasing number of cores per chip, application

developers have to create parallel programs and deal with cumbersome issues such

as synchronization tradeoffs, deadlock avoidance, and races. In this setting, Transac-

tional Memory (TM) [47] has surfaced as a promising technique to help with shared-

memory parallel programs.

2.1 Transactional Memory Basics

With conventional multithreaded programming on shared memory machines, pro-

grammers need to manually manage the synchronization among threads when they

use locks. For example, they must select the lock granularity, create an association

between shared data and locks, and manage lock contention. In other words, with

locks, programmers not only need to declare where synchronization is used, they must

also implement how synchronization occurs.

In contrast, with Transactional Memory (TM), programmers simply declare where

synchronization occurs, and the TM systems handles the implementation. In more

detail, with TM, programmers indicate that a code segment should be executed as

a transaction by placing that group of instructions in an atomic block as shown in

7
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atomic {

if (x != NULL) x.foo();

y++;

}

Figure 2.1: Groups of instructions are executed as a transaction by placing them
inside an atomic block.

Figure 2.1. It is the responsibility of the TM system to guarantee that the trans-

actions have the following properties: atomicity, isolation, and serializability. First,

with atomicity, either all or none of the instructions in the transaction must appear

to occur. Next, having isolation means that none of the intermediate state of a trans-

action is visible outside of the transaction. Finally, serializability requires that the

execution order of concurrent transactions is equivalent to some sequential execution

order of the same transactions.

The way that TM systems achieve good parallel performance is by providing op-

timistic concurrency control. When the TM system executes the body of an atomic

block, it does so speculatively (hence the name “optimistic”). While the body is exe-

cuted, any memory addresses that are read are added to a read set, and ones that are

written are added to a write set. The write set is also used to provide data versioning

by keeping track of either the old or new value for the written address. Finally, at

the end of the atomic block, the TM system ends, or commits, the transaction.

To verify that the speculative execution of the transaction is valid, the TM system

compares the read and write sets of all concurrent transactions. This allows it to

perform fine-grain read-write and write-write conflict detection. If no conflicts are

detected, the transaction commits successfully, otherwise it is aborted, and execution

is rolled back to the beginning of the atomic block and retried.

The key idea in Transactional Memory is that because of their atomicity, isolation,

and serializability properties, transactions can be used to build parallel programs.

Using large atomic blocks simplifies parallel programming because it provides ease-of-

use and good performance. First, like coarse-grain locks, it is relatively easy to reason

about the correctness of transactions. Second, to achieve performance comparable to
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that of fine-grain locks, the programmer does not have to do any extra work because

the TM system will automatically handle that task.

Two more advantages that transactions have over locks are that they provide

composability and failure atomicity. With locks, two code segments that are correct

individually may be incorrect when they are combined. For example, consider a hash

table that uses locks to provide thread-safe insert and remove operations. Unfortu-

nately, combining these two operations to move an item between two different hash

tables may not be correct as this composite operation exposes an invalid intermediate

state where the item does not exist in either hash table. In contrast, simply enclosing

two transactions by a larger transaction guarantees atomicity. Moreover, unlike locks,

correctness is ensured even in the presence of failures. For example, transactions do

not suffer from situations where a thread holds a lock, subsequently dies, and prevents

the progress of any other threads that wish to acquire that same lock.

2.2 Programming Transactional Memory

When implementing a TM system, there are many choices in how transactions interact

with other programming abstractions and in what their semantics should be. In this

section, I will introduce two of these choices: implicit versus explicit barriers and

weak versus strong isolation. A more through coverage of these design choices and

others can be found in [18,21,56]. I will also briefly describe nested transactions.

2.2.1 Implicit vs. Explicit Barriers

Memory addresses can be added to read and write sets either implicitly or explicitly.

To do so implicitly requires either compiler or hardware support to find all the memory

accesses within all the atomic blocks. Without this support, programmers have to

explicitly add barriers to their code to annotate memory accesses to shared variables.

Implicit barriers have the advantage of allowing programmers to compose existing

non-transactional code to create transactions. However, with explicit barriers, an

expert programmer may be able to perform optimizations that lead to smaller read
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and write sets than those achievable with implicit barriers. For example, barriers for

local and private variables can be optimized away.

2.2.2 Weak vs. Strong Isolation

The terms weak isolation and strong isolation were first introduced in [56] (though

the same concepts first appeared in [12], but as weak atomicity and strong atom-

icity). The distinction between weak isolation and strong isolation is that the for-

mer guarantees transactional semantics only among atomic blocks. In comparison,

strong isolation also guarantees transactional semantics between transactional and

non-transactional code (in addition to among just transactional code blocks). Essen-

tially, with strong isolation all non-transactional instructions effectively execute as

one-instruction atomic blocks.

From the programmer’s point of view, strong isolation makes it easier to reason

about correctness, especially when shared data becomes private (privatization) or

when private data is transferred into a shared domain (publication). However, in

spite of the advantages of strong isolation, some TM implementations may choose

to implement weak isolation as it can lead to a design with higher performance.

The subject of weak versus strong isolation will be revisited later in more detail in

Section 5.2.

2.2.3 Nested Transactions

Nested transactions occur when the dynamic extent of a transaction is fully enclosed

by that of another transaction. For example, nested transactions can arise when an

application programmer writes a transaction that contains a library call that executes

transactions itself.

There are three kinds of nested transactions: flattened, closed, and open. With

flattened nested transactions, any nested transaction boundary annotations are simply

ignored and aborting the child transaction causes the parent transaction to also abort.

On the other hand, with closed nested transactions, aborting the child transaction only

causes re-execution of the child transaction. With both flattened and closed nested
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transactions, modifications made by the child transaction are only externally visible

after the parent transaction commits. In contrast, open nested transactions behave

like closed nested transactions, except that the changes of the child transaction are

externally visible as soon as it commits. Because of this, to properly roll back an

open nested transaction, compensation actions must be executed after aborting a

transaction. Longer discussions of nested transactions can be found in [18,61].

2.3 Transactional Memory System Taxonomy

There are many design decisions that can be made when creating a TM system. In this

section, I will introduce three categories that can be used to classify TM systems: the

scheme used for data versioning, the policy used for conflict detection, and whether

a hardware-based or software-based approach is used. A more thorough description

of the taxonomy of TM systems can be found in [56]. Deciding which design choice

is the best requires a comprehensive set of applications that covers a wide variety of

transactional program characteristics, such as large and small sizes of read and write

sets. Approaches used to evaluating different TM designs will be covered later in

Chapter 3.

2.3.1 Lazy vs. Eager Data Versioning

When a transaction performs a write access to memory, the update to the memory

address can be performed either lazily or eagerly. In lazy data versioning, updates to

memory are deferred by buffering them on the side. When a transaction reaches its

commit point, the lazy TM system then updates memory by applying all the deferred

updates in its data versioning buffer. On the other hand, eager data versioning applies

memory updates directly to memory after recording the old value in an undo log. If

a transaction aborts in an eager TM system, the undo log is used to revert all the

updates made by the transaction.

The type of data versioning scheme used gives a TM system different advantages

and disadvantages. With lazy data versioning, transaction aborts are fast because
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main memory does not contain any speculative updates from the transaction. In

contrast, eager data versioning schemes pay a performance penalty on transaction

abort as they must process their undo logs. However, lazy schemes have slower

transaction commits as they defer all transactional updates till the commit point.

Finally, for software-based TMs, lazy versioning leads to slower read accesses than

eager versioning. This is because the software data versioning buffer may contain

values newer than those in main memory, necessitating a search of the buffer during

each speculative read access.

2.3.2 Optimistic vs. Pessimistic Conflict Detection

TM systems can take either an optimistic or pessimistic approach to performing con-

flict detection. With optimistic conflict detection, a TM system optimistically assumes

that a transaction will commit successfully and only performs conflict detection late

at the end of the transaction. On the other hand, pessimistic conflict detection checks

for conflicts on each memory access during transaction execution. Since conflict de-

tection is performed early, less work is potentially wasted if a transaction aborts;

however, optimistic conflict detection allows more transaction interleavings to suc-

cessfully commit and guarantees forward progress. Finally, lazy data versioning is

usually combined with optimistic conflict detection and eager data versioning with

pessimistic conflict detection, as these are the synergistic combinations.

2.3.3 Hardware vs. Software

All TM systems must implement data versioning and conflict detection; however,

these tasks can be implemented in either hardware (HTM) or software (STM).

2.4 Hardware Transactional Memory

Hardware Transactional Memory (HTM) systems implement data versioning and con-

flict detection by enhancing both the caches and the cache coherence protocol in a
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multi-core system [11,14,41,65,72]. Sections 2.4.1 and 2.4.2 describe an HTM imple-

mentation with lazy data versioning and optimistic conflict detection and an HTM

with eager data versioning and pessimistic conflict detection, respectively.

2.4.1 A Lazy Optimistic HTM

The lazy optimistic HTM that I will describe is similar in design to the TCC sys-

tem [41]. Both use the cache to buffer the write set until the transaction commits,

and conflict detection is implemented using coherence messages when one transaction

attempts to commit. However, my lazy optimistic HTM has two important differ-

ences from the TCC design. First, TCC executes all user code in transactional mode,

while my lazy optimistic HTM uses transactional mechanisms only for user-defined

transactions. The rest of the code executes as a conventional multithreaded program

with MESI cache coherence and sequential consistency. Second, TCC uses a write-

through coherence protocol that provides conflict resolution at word granularity. My

lazy optimistic HTM uses write-back caches, which require conflict detection at cache

line granularity.

The lazy optimistic HTM extends each cache line with one read bit (R) and one

write bit (W) that indicate membership in a transaction’s read set and write set,

respectively. A transaction starts by taking a register checkpoint using a hardware

mechanism. A store writes to the cache and sets the W bit. If there is a cache miss,

the cache line is requested in the shared state. If there is a hit but the line contains

modified data produced prior to the current transaction (modified and W bit not set),

it first writes the data back to lower levels of the memory hierarchy. A load reads the

corresponding word and sets the R bit if the W bit is not already set. If there is a

cache miss for the load, the line is retrieved in the shared state as well. Overflows of

the cache are handled by acquiring a unique hardware lock to temporarily serialize

the execution of transactions.

When a transaction completes, it arbitrates for permission to commit by acquiring

a unique hardware lock. This implies that only a single transaction may be commit-

ting at any point in time. Parallel commit can be supported by using a two-phase
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protocol [24]. Next, the lazy optimistic HTM generates snooping messages to request

exclusive access for any lines in its write set (W bit set) that are in shared state. At

this point, the transaction is validated. Finally, it commits the write set atomically

by flash resetting all R and W bits and then releasing the commit lock. All data in

the write set are now modified in the processor’s cache but are non-transactional and

can be read by other processors.

An ongoing transaction detects a conflict when it receives a coherence message

with an exclusive request for data in its read or write set. Such a message can be

generated by a committing transaction or by a non-transactional store. A violated

transaction is rolled back by flash invalidating all lines in the write set, flash resetting

all R and W bits, and restoring the register checkpoint. Since memory accesses both

inside and outside transactions can generate coherence messages, the lazy optimistic

HTM’s conflict detection mechanism provides strong isolation.

Transaction starvation is avoided by allowing a transaction that has been retried

multiple times to acquire the commit lock at its very beginning. Forward progress is

guaranteed because a validated transaction cannot abort. To guarantee this, a vali-

dated transaction sends negative acknowledgments (NACKs) to all types of coherence

requests for data in its write set and exclusive requests for data in its read set. Once

validated, an HTM transaction must execute just a few instructions to flash reset

its W and R bits, hence the window of NACKs is extremely short. If a transaction

receives a shared request for a line in its read set or write set prior to reaching the

commit stage, it responds that it has a shared copy of the line and downgrades its

cache line to the shared state if needed.

2.4.2 An Eager Pessimistic HTM

The eager pessimistic HTM described in this section is based on the LogTM sys-

tem [65]. As in the lazy optimistic HTM, the cache in the eager pessimistic HTM is

modified to have one read bit and one write bit per cache line, and the bits are used

in the same manner in both HTMs. The eager pessimistic HTM also has hardware to
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accelerate manipulation of an undo log. Writes to memory addresses inside transac-

tions update memory directly after the old value and its virtual address are recorded

in the undo log. To prevent redundant log operations, the W bits in the cache are

used as a filter. When a transaction aborts, a software handler walks the software

log to restore the old values to memory. Transaction commit is very fast because no

values need to be copied to memory and the pointer to the log simply needs to be

reset.

By using the R and W bits in the cache and the coherence protocol, conflicts

among transactions are detected and strong isolation is provided. When a processor

receives a coherence message with a request for something in its read set or write set

(detected by checking the cache’s R and W bits), it responds with either an ACK (no

conflict) or a NACK (conflict). The requesting processor then receives this response

and resolves the conflict. If an overflow of the cache occurs, the event is recorded and

conflicts are conservatively indicated.

Thus far, the operation of the eager pessimistic HTM has been the same as LogTM;

however, my eager pessimistic HTM does have a few important differences. First, it

uses broadcast coherence with a MESI protocol. Since LogTM uses directories with a

MOESI protocol, it introduces “sticky” states to delay modifications to the directories

so that coherence messages are still received for lines that are overflowed. Second, my

eager pessimistic HTM uses a Bloom filter [9] to record overflowed addresses instead

of a single bit. While, this technique still detects conflicts conservatively, it admits

much fewer false conflicts than a single bit (at a slightly increased hardware cost).

Finally, to guarantee forward progress, a transaction that aborts several times in my

eager pessimistic HTM acquires a unique global hardware lock to guarantee that it

commits successfully.

2.4.3 HTM Challenges

Because HTMs use hardware to implement data versioning and conflict detection,

they offer high performance and inherently provide strong isolation. High perfor-

mance is achieved because no software annotations are required on memory accesses,
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and strong isolation is naturally provided by leveraging the cache coherence protocol

for conflict detection. Unfortunately, implementing all transactional features in hard-

ware is both costly and inflexible. All the lines in the cache must be modified, and

extra hardware may need to be added to support an undo log. This hardware cost

is further exacerbated if transaction nesting is supported by hardware. Furthermore,

because hardware resources are finite and shared by all threads, HTMs face trans-

action virtualization challenges. For example, HTMs can encounter difficulties when

transactionally-accessed lines overflow the capacity of the cache or when transaction

metadata in the hardware must survive events like context switches. Finally, HTMs

that rely on coherence protocols such as MESI cannot detect conflicts at finer granu-

larity than lines. This can lead to false sharing among threads if they access disjoint

words in the same line, and the false conflicts that result hurt performance.

2.5 Software Transactional Memory

STM systems implement version management and conflict detection using software-

only techniques [32, 43, 46, 59, 80]. Sections 2.5.1 and 2.5.2 describe an STM imple-

mentation with lazy data versioning and optimistic conflict detection and an STM

with eager data versioning and pessimistic conflict detection, respectively.

2.5.1 A Lazy Optimistic STM

In this section, I will describe a lazy optimistic STM based on the TL2 STM [32].

TL2 is a lock-based STM that implements optimistic concurrency control for both

read and write accesses and scales well across a range of contention scenarios [34].

It is the software equivalent of the lazy optimistic HTM from Section 2.4.1. The

source code for the lazy optimistic STM is open source and can be downloaded from

http://stamp.stanford.edu.

Figures 2.2 and 2.3 provide a simplified overview of the lazy optimistic STM for

a C-style programming language. Refer to [32] for a discussion of TL2 for object-

oriented languages. The lazy optimistic STM maintains a global version clock used
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1: procedure LazySTMtxStart
2: checkpoint()
3: ReadV ersion ← GlobalClock
4: end procedure

5: procedure LazySTMreadBarrier(addr)
6: if bloomFilter.member(addr) and writeSet.member(addr) then
7: return writeSet.lookup(addr)
8: end if
9: value ← Memory[addr]

10: if locked(addr) or (timeStamp(addr) > ReadV ersion) then
11: conflict()
12: end if
13: readSet.insert(addr)
14: return value
15: end procedure

16: procedure LazySTMwriteBarrier(addr, data)
17: bloomFilter.insert(addr)
18: writeSet.insert(addr, data)
19: end procedure

Figure 2.2: Pseudocode for the basic functions in lazy STM.

to generate time stamps for all data. To implement conflict detection at word granu-

larity, it also associates a lock with every word in memory by using a hash function.

The first bit in the lock word indicates if the corresponding word is currently locked.

The remaining bits are used to store the time stamp generated by the last transaction

to write the corresponding data.

A transaction starts (LazySTMtxStart) by using setjmp to take a checkpoint

of the current execution and by reading the current value of the global clock into

the variable ReadV ersion. A transaction updates a word by using a write barrier

(LazySTMwriteBarrier). The barrier first checks for a conflict with other committing

or committed transactions by using the corresponding lock for the address to be

written. A conflict is signaled if the word is locked or its time stamp is higher than

the value in ReadV ersion. Assuming no conflict, the store address and data are added
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1: procedure LazySTMtxCommit
2: for all addr in writeSet do
3: if lock(addr) fails then
4: conflict()
5: end if
6: end for
7: WriteV ersion ← Fetch&Increment(GlobalClock)
8: for all addr in readSet do
9: if locked(addr) or (timeStamp(addr) > ReadV ersion) then

10: conflict()
11: end if
12: end for
13: for all addr in writeSet do
14: Memory[addr] ← writeSet.lookup(addr)
15: end for
16: for all addr in writeSet do
17: timeStamp(addr) ← WriteV ersion
18: unlock(addr)
19: end for
20: end procedure

21: procedure LazySTMtxAbort
22: readSet.reset()
23: writeSet.reset()
24: doContentionManagement()
25: restoreCheckpoint()
26: end procedure

Figure 2.3: Pseudocode for the basic functions in lazy STM (continued).
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to the write set, a hash table that buffers the transaction output until it commits.

The STM also maintains a software 32-bit Bloom filter [9] for the addresses in the

write set. A transaction loads a word using a read barrier (LazySTMreadBarrier).

The barrier first checks if the latest value of the word is available in the write set

and uses the Bloom filter to reduce the number of hash table lookups. If the address

is not in the write set, it checks for a conflict with other committing or committed

transactions. Assuming no conflict, it inserts the address to the read set, a simple

FIFO that tracks read addresses. Finally, it loads the word from memory and returns

its value to the user code.

In order to commit its work (LazySTMtxCommit), a transaction first attempts to

acquire the locks for all words in its write set. If it fails on any lock then a conflict

is signaled. Next, it atomically increments the global version clock by using the

atomic instructions in the underlying ISA (e.g., cmpxchg in x86). It also validates

all addresses in the read set by verifying that they are unlocked and that their time

stamp is not greater than ReadV ersion. At this point, the transaction is validated

and guaranteed to complete successfully. The final step is to scan the write set twice in

order to copy the new values to memory, update their time stamp to WriteV ersion,

and release the corresponding lock.

The lazy optimistic STM handles conflicts in the following manner. If a transac-

tion fails to acquire a lock while committing, it first spins for a limited time and then

aborts by using LazySTMtxAbort. To provide liveness, the STM retries the transac-

tion after a random backoff delay that is linearly biased by the number of aborts thus

far.

2.5.2 An Eager Pessimistic STM

To create an eager pessimistic STM, I modified the lazy optimistic STM from Sec-

tion 2.5.1. Figures 2.4 and 2.5 provide pseudocode that show the basic functions of

the eager pessimistic STM. Like the lazy optimistic STM, a global version clock is

used and all memory addresses are associated with a lock word via a hash function.
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1: procedure EagerSTMtxStart
2: checkpoint()
3: ReadV ersion ← GlobalClock
4: end procedure

5: procedure EagerSTMreadBarrier(addr)
6: value ← Memory[addr]
7: if locked(addr) or (timeStamp(addr) > ReadV ersion) then
8: conflict()
9: end if

10: readSet.insert(addr)
11: return value
12: end procedure

13: procedure EagerSTMwriteBarrier(addr, data)
14: if lock(addr) fails then
15: conflict()
16: end if
17: writeSet.insert(addr, Memory[addr])
18: Memory[addr] ← data
19: end procedure

Figure 2.4: Pseudocode for the basic functions in eager STM.

Starting a transaction (EagerSTMtxStart) performs the same tasks as in the lazy

optimistic STM equivalent.

Since this STM updates values eagerly, the code for the read and write barriers

differs from that of the lazy optimistic STM. Because main memory contains the most

recently updated values, EagerSTMreadBarrier does not need to perform a scan of

the write set, which also makes it unnecessary to have a Bloom filter. To perform

conflict detection pessimistically, EagerSTMwriteBarrier first attempts to acquire a

lock for the address being written. If this lock acquisition fails, a conflict is signaled,

otherwise the original value of the address is saved in the undo log and main memory

is updated.

Committing a transaction in the eager pessimistic STM involves several steps. Be-

cause locks have been acquired incrementally by the write barriers, EagerSTMtxCommit
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1: procedure EagerSTMtxCommit
2: WriteV ersion ← Fetch&Increment(GlobalClock)
3: for all addr in readSet do
4: if locked(addr) or (timeStamp(addr) > ReadV ersion) then
5: conflict()
6: end if
7: end for
8: for all addr in writeSet do
9: timeStamp(addr) ← WriteV ersion

10: unlock(addr)
11: end for
12: end procedure

13: procedure EagerSTMtxAbort
14: readSet.reset()
15: for all addr in writeSet do
16: Memory[addr] ← writeSet.lookup(addr)
17: end for
18: for all addr in writeSet do
19: unlock(addr)
20: end for
21: writeSet.reset()
22: doContentionManagement()
23: restoreCheckpoint()
24: end procedure

Figure 2.5: Pseudocode for the basic functions in eager STM (continued).
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does not need to perform a pass over the write set to lock all the written addresses.

Then, as in the lazy optimistic STM, the WriteV ersion is incremented and the read

set is validated. If the read set passes validation, the transaction can successfully

commit. The most recent values are already in memory, so no copying is required.

Commit ends by doing a final pass over the write set to update the version numbers

and release the locks protecting the write set.

Although transaction commit is faster in the eager pessimistic STM than in its

lazy optimistic equivalent, aborting transaction can be much slower. After resetting

the read set, EagerSTMtxAbort must iterate over the undo log to revert the contents

of memory. Atomicity of the value restoration is provided by the locks acquired in

EagerSTMwriteBarrier for each of the written addresses. Then, after the values are

restored, another traversal must be performed over the write set to release all of the

locks. Finally, the write set is reset and a randomized linear backoff biased by the

current number of aborts is performed to prevent livelock.

2.5.3 STM Challenges

As STMs use software to implement data versioning and conflict detection they are

relatively inexpensive build and can also easily be changed to implement a variety

of transactional policies. However, doing everything in software incurs much greater

overhead than if dedicated hardware were used. For example, software barriers must

be used to annotate memory accesses and data structures must be maintained and

queried to perform conflict detection. Moreover, in order prevent further perfor-

mance degradation, many STMs only support weak isolation of transactions. Provid-

ing strong isolation in STMs can be achieved by adding read and write barriers for

memory accesses outside of transactions, which exacerbates the software overhead of

STM systems. Finally, the presence of STM library code can increase cache pressure,

resulting in more cache misses.
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2.6 Related Work

This section briefly overviews some of the work done in designing HTM and STM

systems. Larus and Rajwar present more detailed coverage of the history of TM

in [56].

2.6.1 Hardware Transactional Memory

Hardware Transactional Memory first appeared when Herlihy and Moss proposed us-

ing HTM for building lock-free data structures [47]. Another early HTM system was

Speculative Lock Elision (SLE) [69]. By using hardware support, SLE optimistically

executed lock-demarcated critical regions as transactions. This allowed programmers

to conservatively use frequent lock-based synchronization, while achieving the perfor-

mance of more well-tuned locks. Transactional Lock Removal (TLR) [70] was a later

extension to SLE that used time stamps for conflict resolution to provide transactional

semantics and prevent starvation.

Later HTM systems focused on addressing the limited transaction size of early

HTM designs. In the Transactional Coherence and Consistency (TCC) system [41],

a new shared memory model is presented where all code executes transactionally.

Transactional read and writes are buffered in the cache, and if an overflow occurs,

TCC temporarily enters a nonspeculative mode. UTM and LTM [3] use a local un-

cached memory region as extra storage for cache overflows, and LogTM [65] modifies

the coherence protocol to allow transactional state to escape the cache.

More recently, HTM designs have solved the problem of virtualizing transactional

state across time. The VTM system [71] accomplished this by placing a data structure

(the XADT) in virtual memory. When space or time virtualization is required, the

XADT is used to hold transactionally-accessed cache lines. To accelerate processing of

the XADT, VTM adds dedicated hardware. In contrast, the PTM [27] and XTM [29]

systems utilize pages from the virtual memory system to virtualize transactional state

at lower hardware costs than VTM.

Two recent HTMs have improved hardware support for transactions of unbounded

size. OneTM [10] features simple hardware that allows unbounded transaction sizes,
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but with the restriction that only one unbounded transaction can be executing at any

given time. The execution of all non-overflowed transactions, however, is unhindered

in the presence of an overflowed transaction. In TokenTM [14], the limit of a single

overflowed transaction is removed while still retaining relatively simple hardware.

This is accomplished by associating tokens with each memory block and using them

to perform precise and unbounded transactional conflict detection. Like OneTM,

non-overflowed transactions in TokenTM are not affected by overflowed transactions.

Finally, some HTM proposals have looked at incorporating hardware support for

software. In MetaTM [73], architectural support is added for running a transactional

operating system (TxLinux [77]). The FlexTM system [87] shows how transactional

hardware can be decoupled into four components: access tracking, conflict track-

ing, data versioning support, and conflict notification. Having these well-defined

components, makes it potentially easier to reuse transactional hardware for non-

transactional purposes.

2.6.2 Software Transactional Memory

The first STM design was proposed by Shavit and Touitou [85] and required pro-

grammers to statically specify each transaction’s data versioning requirements. Syn-

chronization within the STM itself was accomplished with non-blocking (lock-free)

techniques. STM systems then transitioned to dynamic data versioning designs with

the DSTM system [46]. Next, the WSTM system [43] showed how to integrate STM

into programming languages, giving birth to modern STM designs. Later work also

showed how to handle exceptions and side-effects in transactions [42] and how to

integrate transactional memory with modern programming languages [18–20,60].

Many STMs have explored different techniques for data versioning, conflict de-

tection, and contention management. Using the DSTM system, Scherer and Scott

explored a variety of contention management schemes for STM [83]. Other work on

comparing contention management studies include [37, 38]. Based on this work, the

ASTM system [58] provided a system that could adapt its contention management

policy to enable the best performance for a given workload. In [80], Saha et al. present
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the McRT STM and provide a comparison between lazy and eager data versioning,

word-granular and object-granular locks, and whether readers or writers should be

preferred when acquiring locks. The proposal of the McRT STM also marked a tran-

sition from non-blocking to blocking designs in STMs. Finally, the Transactional

Locking (TL) STM [33], provided an analysis of optimistic versus pessimistic conflict

detection.

Two recent STM designs incorporated time stamps to efficiently check the consis-

tency of data accessed in transactions. The first of these was TL2 [32], which used a

single global counter and a deferred-update and blocking implementation. A scalable

replacement for the single global counter was then later presented in conjunction with

the LSA STM, which introduced an efficient method for verifying the consistency of

transactional objects on each access [75, 76].

Finally, much work has been done in using compilers to support software trans-

actions. A thorough coverage of several compiler techniques to optimize STMs is

presented in [1]. Later work also showed how to use compilers in managed lan-

guages to minimize the extra overhead associated with providing strong isolation for

STMs [86].
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Chapter 3

Benchmarking Transactional

Memory

Benchmarks are software programs that are used to evaluate certain aspects of com-

puters and help guide the design of future systems. However, the conclusions that

are drawn from benchmark results are limited by the ability of the benchmarks to

cover relevant aspects of the computer system. In this chapter, I argue that current

approaches to benchmarking Transactional Memory systems have been inadequate.

As a solution, I propose the Stanford Transactional Applications for Multi-Processing

(STAMP), a new benchmark suite designed specifically for comprehensively analyzing

Transactional Memory systems.

3.1 Motivation and Requirements

Most evaluations of Transactional Memory systems have relied on microbenchmarks

or parallel applications from benchmark suites like SPEComp [91] or SPLASH-2 [97].

While microbenchmarks are useful in targeting specific system features, they are not

representative of how full applications will behave on TM systems. On the other

hand, the benchmarks in SPEComp and SPLASH-2 are full applications, but they

have been heavily optimized by an expert (typically as part of a computer science

Ph.D. thesis) to minimize synchronization and communication across threads. Thus,

27
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converting their fine-grain lock-protected regions to transactions leads to programs

that rarely use transactions [30], making it hard to evaluate the differences among

TM systems. Furthermore, this behavior is not necessarily representative of how

mainstream programmers will use transactions in their programs. The most appealing

potential of TM for many programmers is the ability to write simple parallel code

with frequent use of coarse-grain transactions that performs as well as code that has

been carefully optimized to use fine-grain locks.

For a benchmark suite to enable a thorough analysis of a wide range of TM

systems, it must have three key features. First, it must target a variety of algorithms

and application domains that can benefit from TM. Second, it must cover a wide

range of transactional characteristics, such as a range of transaction lengths or sizes

of read and write sets. Moreover, the amount of time spent in transactions should be

varied. Certain applications or data sets in the suite should generate cases where a

significant portion of execution time is spent in transactions. This requirement allows

the performance of TM systems to be evaluated with frequently-used, coarse-grain

transactions. Finally, the benchmark suite must be compatible with a large number

of TM systems, covering hardware, software, and hybrid designs.

3.2 Existing Benchmarks

Researchers and industry consortiums have created many benchmarks for evaluating

parallel systems. Recently, some benchmarks for TM systems have emerged as well.

This section reviews the scope, strengths, and shortcomings of these efforts with

respect to evaluating TM systems.

3.2.1 Parallel Benchmarks

Three of the oldest and most widely used parallel benchmarks are SPLASH-2 [97],

NPB OpenMP [49], and SPEComp [91]. More recently, domain-specific parallel

benchmarks have also been created, such as BioParallel [48] for bioinformatics and
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MineBench [66] for data mining. These benchmark suites consist of several applica-

tions that span a variety of algorithms. Additionally, all of them utilize OpenMP as

their programming model, except for SPLASH-2, which uses a Pthreads-like model

through the use of ANL macros.

PARSEC [8] is a very recent parallel benchmark that was created to address some

of the shortcomings in the above-mentioned benchmarks. In selecting the PARSEC

applications, care was taken to use state-of-art techniques in a range of applica-

tion domains not limited to just high-performance computing. The applications are

written in either C or C++ and use either OpenMP or Pthreads to implement the

parallelization.

Even though these benchmarks are useful in analyzing parallel systems in general,

their applicability to TM systems is limited. For example, many of the applications

in these benchmarks consist of regular algorithms that can be parallelized without

stressing synchronization (i.e., just using barriers is sufficient). Furthermore, in or-

der to achieve the highest possible performance, the irregular applications in these

benchmarks have been carefully optimized by expert programmers to minimize the

time spent in critical regions. Converting the critical regions in these applications to

transactions [27,31,62,65], leads to programs with small transactions that are rarely

used. Consequently, these benchmarks are unable to sufficiently stress the underlying

TM system and do not generate most of the interesting cases of transactional behavior

with respect to transaction length and frequency or sizes of read and write sets. Since

manual tuning of the application code by an expert contradicts the primary goal of

transactional memory (practical parallel programming for mainstream developers),

usage of these benchmarks alone to evaluate TM systems may be misleading.

3.2.2 Transactional Memory Benchmarks

To better target TM systems, researchers have begun creating new workloads. Ex-

isting efforts can be grouped into two general categories: microbenchmarks and in-

dividual applications. TM microbenchmarks are typically composed of transactions

that execute a few operations on a data structure like a hash table or red-black
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tree [31, 32, 55, 59, 80]. These microbenchmarks are easy to develop, parameterize,

and port across systems. Furthermore, they are very useful for isolating particular

cases of interest in the TM system. However, they are not representative of full

applications. Full applications are likely to have transactions that consist of many

operations across several data structures and may also include significant amounts of

parallel or sequential work between transactions. Thus, the transactional character-

istics of microbenchmarks and full applications may be significantly different.

A few larger workloads that target TM systems have been designed to address

the disparity between microbenchmarks and full applications: Delaunay mesh gener-

ation [84], database management [39], BerkeleyDB [31], maze routing [96], and Delau-

nay mesh refinement and agglomerative clustering [54]. These applications represent

realistic workloads and avoid the pitfalls of microbenchmarks. However, as they are

all standalone and not part of a larger suite, their coverage of algorithms and trans-

actional behaviors is limited. Moreover, only the first two of these applications are

publicly available to the research community.

More recent work has focused on the creation of TM benchmark suites. Per-

fumo et al. [68] have created a suite of nine applications targeted at evaluating STMs.

However, the applications are implemented in Haskell and are thus not directly com-

patible with the majority of STM implementations or HTM and hybrid TM simulation

environments. Almost all of these applications are also microbenchmarks and not full

applications.

3.3 Stanford Transactional Applications

for Multi-Processing (STAMP)

At present, no benchmark suite for TM covers a wide enough range of algorithms

and application domains, stresses most cases of transactional behavior, and runs eas-

ily on many classes of TM systems. The Stanford Transactional Applications for
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Multi-Processing (STAMP) is the first benchmark suite to satisfy all of these require-

ments [16]. STAMP consists of eight applications with 30 different sets of configura-

tions and input data that exercise a wide range of transactional behaviors. Moreover,

STAMP can run on a variety of hardware, software, and hybrid TM systems. STAMP

is publicly available at http://stamp.stanford.edu.

3.3.1 Design Philosophy

The design of the STAMP benchmark suite follows three guiding principles to make

it an effective and comprehensive tool for evaluating TM systems:

1. Breadth: STAMP consists of a variety of algorithms and application domains.

In particular, I favor applications that are not trivially parallelizable without

synchronization, as they can benefit significantly (in terms of ease of program-

ming) from the optimistic concurrency that TM offers.

2. Depth: STAMP covers a wide range of transactional behaviors such as varying

degrees of contention, short and long transactions, and different sizes of read

and write sets. I also include applications that make frequent use of coarse-

grain transactions and spend a significant portion of their execution time within

transactions. This results in a balanced set of workloads that adequately stress

the underlying TM system.

3. Portability: STAMP can easily run on many classes of TM systems, including

hardware-based (HTM), software-based (STM) and hybrid designs. The code

for all benchmarks is written in C with annotations to indicate both transaction

boundaries and memory accesses that require instrumentation for software and

hybrid systems. I have successfully run the suite on six TM systems, including

HTM, STM, and hybrid TM systems with eager and lazy data versioning.

Table 3.1 summarizes how various parallel and TM benchmarks meet the three

requirements discussed above. To the best of my knowledge, STAMP is the only suite

that satisfies all three requirements at this point. All the parallel benchmarks (the



32 CHAPTER 3. BENCHMARKING TRANSACTIONAL MEMORY

Table 3.1: Summary of publicly available benchmark suites used to evaluate TM
systems. The bottom half of the table lists benchmarks created specifically for an-
alyzing TM systems. The Breadth column also lists the number of applications or
kernels included in each suite.

Benchmark Breadth Depth Portability Comments

SPLASH-2 [97] yes (12) no partial Mostly regular algorithms.

NPB OpenMP [49] yes (7) no partial Mostly regular algorithms.

SPEComp [91] yes (11) no partial Mostly regular algorithms.

BioParallel [48] partial (5) no partial Domain-specific.

MineBench [66] partial (15) no partial Domain-specific.

PARSEC [8] yes (12) no partial No transaction annotations.

RSTMv3 [59,84] no (6) yes yes Mostly microbenchmarks.

STMbench7 [39] no (1) yes yes Single application.

Perfumo et al. [68] yes (9) yes no Mostly microbenchmarks.
Implemented in Haskell.

STAMP [16] yes (8) yes yes Meets all 3 requirements.

upper half of Table 3.1) are only partially portable with regard to TM systems as

they lack annotations for generating STM read and write barriers. As for the TM

benchmarks (the lower half of the table), RSTMv3 [59, 84] has six benchmarks, five

of which are microbenchmarks, and thus it does not satisfy the breadth requirement.

3.3.2 Applications Overview

STAMP currently consists of eight applications: bayes, genome, intruder, kmeans,

labyrinth, ssca2, vacation, and yada. These applications span a variety of com-

puting domains as well as runtime transactional characteristics such as varying trans-

action lengths, read and write set sizes, and amounts of contention. Table 3.2 gives

a brief description of each benchmark, and more detailed descriptions follow in Sec-

tion 3.4.
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Table 3.2: The eight applications in the STAMP suite.

Application Domain Description

bayes machine learning Learns structure of a Bayesian network

genome bioinformatics Performs gene sequencing

intruder security Detects network intrusions

kmeans data mining Implements K-means clustering

labyrinth engineering Routes paths in maze

ssca2 scientific Creates efficient graph representation

vacation online transaction processing Emulates travel reservation system

yada scientific Refines a Delaunay mesh

3.3.3 Implementation

To ease portability of STAMP to several TM systems, I chose to implement all the

applications using the C programming language. I also used a low-level API to man-

ually identify parallel threads and insert transaction markers and barriers. The same

annotations are used by all TM versions of the code. Moreover, the only difference

between the eager and lazy variants of the STM and hybrid versions of the code is

linkage against a different TM barrier library. Manual optimizations of read and write

barriers for accesses to shared data were performed following the guidelines in [1,44].

Currently, the TM annotations are implemented by C macros, which makes them

easy to replace, remove, or port to different systems. In a later version of STAMP,

a higher-level representation for the transactions will be used and a compiler will

perform the optimizations. One example of such a representation is OpenTM [5].

3.4 STAMP Application Descriptions

This section explains the algorithms and data structures present in each application

as well as the parallelization strategy and use of transactions in each.
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(a) Initial Bayesian network.
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(b) A learned dependence.
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(c) Another learned dependence.
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(d) Final Bayesian network.

Figure 3.1: A Bayesian network represented as a graph, where each node represents
a variable and edges indicate conditional dependences. Dependences are learned and
added iteratively. In this example, Rain affects the state of Sprinkler, and Grass
becomes wet from either Sprinkler or Rain.

3.4.1 bayes

This application implements an algorithm for learning the structure of Bayesian net-

works from observed data, which is an important part of machine learning. The

algorithm uses a hill-climbing strategy that combines local and global search, similar

to the technique described in [26]. An adtree data structure [64] is used to achieve

efficient estimates of probability distributions. The Bayesian network itself is repre-

sented as a directed acyclic graph, with a node for each variable and an edge for each

conditional dependence between variables. Figure 3.1 depicts an example Bayesian

network and the iterative process used to determine its structure.

Pseudocode for the main part of the algorithm in shown in Figure 3.2. Initially,

the network has no dependencies among variables, and the algorithm incrementally

learns dependencies by analyzing the observed data. On each iteration, each thread

is given a variable to analyze (Line 6), and as more dependencies are added to the

network (Line 12), connected subgraphs of dependent variables are formed.
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1: global Queue dependencies
2: global Graph network

3: begin parallel
4: while true do

5: TxBegin
6: dependency ← dependencies.pop()
7: TxEnd
8: if dependency is null then
9: break

10: end if

11: TxBegin
12: network.apply(dependency)
13: TxEnd

14: TxBegin
15: fromV ariable← dependency.from()
16: subGraph← network.subGraph(fromV ariable)
17: newDependency ← network.getNewDependency(fromV ariable, subGraph)
18: TxEnd

19: if newDependency is not null then
20: TxBegin
21: dependencies.push(newDependency)
22: TxEnd
23: end if

24: end while
25: end parallel

Figure 3.2: Pseudocode for bayes.
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Figure 3.3: Two possible reconstructions of the segments: ATCG, CAGC, CGAG, TCGG,
and GATC. Reconstruction is performed by sliding segments so they overlap with each
other. The bottom half of the figure shows the final reconstructed genome. For
example, note how all the occurrences of T lie in the same column. Between the two
reconstructions, the one on the right is more optimal as it is shorter.

A transaction is used to protect the calculation and addition of a new dependency,

as the result depends on the extent of the subgraph that contains the variable being

analyzed. Using transactions is much simpler than using a lock-based approach as

locks would require manually orchestrating a two-phase locking scheme with deadlock

detection and recovery to allow concurrent modifications of the graph. This usage of

transactions is similar to the transaction-based soft optimization techniques covered

in [6]. Calculations of new dependencies (Figure 3.2, Line 17) take up most of the

execution time, causing bayes to spend almost all its execution time in long transac-

tions that have large read and write sets. Overall, this benchmark has a high amount

of contention as the subgraphs change frequently.

3.4.2 genome

Genome assembly is the process of taking a large number of DNA segments and

matching them to reconstruct the original source genome. An example of shotgun

genome sequencing is shown in Figure 3.3.

As shown in Figure 3.4, this program has two phases to accomplish this task. Since

there is a relatively large number of DNA segments, there are often many duplicates.

The first phase of the algorithm utilizes a hash set to create a set of unique segments.
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1: global Array segments
2: global Set uniqueSegments

3: begin parallel

4: for all segment in segments.myPartition() do . Start Phase 1
5: TxBegin
6: if segment not in uniqueSegments then
7: uniqueSegments.insert(segment)
8: end if
9: TxEnd

10: end for

11: Barrier

12: for all uniqueSegment in uniqueSegments.myPartition() do . Start Phase 2
13: TxBegin
14: matchedSegment← uniqueSegments.findMatch(uniqueSegment)
15: if matchedSegment is not null then
16: uniqueSegments.remove(matchedSegment)
17: uniqueSegment.join(matchedSegment)
18: end if
19: TxEnd
20: end for

21: end parallel

Figure 3.4: Pseudocode for genome.

In the second phase of the algorithm, each thread tries to remove a segment from a

global pool of unmatched segments and add it to its partition of currently matched

segments. When performing the matching between two segments, Rabin-Karp string

matching [51] is used to speed up the comparison.

Transactions are used in each of the two phases of the benchmark. Additions

to the set of unique segments are enclosed by transactions to allow for concurrent

accesses, and accesses to the global pool of unmatched segments are also enclosed

by transactions since multiple threads may try to remove the same segment. By

using transactions for the reconstruction, I did not have to implement a deadlock

avoidance scheme. Overall, the transactions in genome are of moderate length and

have moderate read and write set sizes. Additionally, almost all of the execution time

is transactional, and there is relatively little contention.
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3.4.3 intruder

Signature-based network intrusion detection systems (NIDS) scan network packets

for matches against a known set of intrusion signatures. This benchmark emulates

Design 5 of the NIDS described by Haagdorens et al. in [40]. Network packets are

processed in parallel and go through three phases: capture, reassembly, and detection.

The main data structure in the capture phase is a simple FIFO queue, and the re-

assembly phase uses a dictionary (implemented by a self-balancing tree) that contains

lists of packets that belong to the same session. When evaluating their five designs for

a multithreaded NIDS, Haagdorens et al. state that the complexity of the reassem-

bly phase caused them to use coarse-grain synchronization in Designs 4 and 5. Thus,

even though these two designs attempted to exploit higher levels of concurrency, their

coarse-grain synchronization resulted in worse performance.

In the TM version included in STAMP, the capture and reassembly phases are

each enclosed by transactions. Hence, the code for each phase is as simple as that

with coarse-grain locks but hopefully achieves good performance through optimistic

concurrency. When operating on these data structures, this benchmark has relatively

short transactions. It also has moderate to high levels of contention depending on

how often the reassembly phase rebalances its tree. Overall, since two of the three

phases are spent in transactions, this benchmark has a moderate amount of total

transactional execution time. The pseudocode for the benchmark is shown in Fig-

ure 3.5.

3.4.4 kmeans

The K-means algorithm groups objects in an N -dimensional space into K clusters

as shown in Figure 3.6. This algorithm is commonly used to partition data items

into related subsets. The implementation used is taken from MineBench [66] and

has each thread processing a partition of the objects iteratively. The TM version

add a transaction to protect the update of the cluster center that occurs during each

iteration. The amount of contention among threads depends on the value of K, with

larger values of K resulting in less frequent conflicts as it is less likely that two threads
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1: global Queue packets
2: global Decoder decoder

3: begin parallel
4: Detector detector
5: while true do

6: TxBegin . Start Capture phase
7: packet← packets.remove()
8: TxEnd
9: if packet is null then

10: break
11: end if

12: TxBegin . Start Reassembly phase
13: error ← decoder.reassemble(packet)
14: TxEnd
15: if error then
16: Invalid packet
17: end if
18: TxBegin
19: data← decoder.getComplete(packet)
20: TxEnd

21: if data is not null then . Start Detection phase
22: error ← detector.check(data)
23: if error then
24: Intrusion detected
25: end if
26: end if

27: end while
28: end parallel

Figure 3.5: Pseudocode for intruder
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(a) Initial data. (b) Data grouped into 2 clusters.

Figure 3.6: An example of K-means clustering with K = 2. In (b), the two clusters
centers are indicated by the symbol ×.

are concurrently operating on the same cluster center. Since threads only occasionally

update the same center concurrently, this algorithm benefits from TM’s optimistic

concurrency.

When updating the cluster centers, the size of the transaction is proportional to

D, the dimensionality of the space. Thus, the sizes of the transactions in kmeans are

relatively small and so are its read and write sets. Overall, the majority of execution

time for kmeans is spent calculating the new cluster centers. During this operation,

each thread reads from its partition of objects so no transaction is required. Thus,

relatively little of the total execution time is spent in transactions.

3.4.5 labyrinth

Lee’s algorithm [57] is a popular maze routing algorithm used in applications such as

VLSI layout. To route a path, the algorithm first performs a breadth-first search from

the start point to the end point, in what is called the Expand phase. After the end

point is reached, the algorithm executes the Backtrack phase, which simply involves

picking the final route from one of the valid paths traversed during the Expand phase.

Figure 3.8 illustrates how these two phases work.
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1: global Array points . N points of dimension D
2: global Array memberships . N integers ∈ [1...K]
3: global Array centers . K points of dimension D
4: global Integer delta

5: begin parallel
6: for all point in points.myPartition() do
7: k = FindNearestCenter(centers, point)
8: if k 6= memberships[point] then
9: myDelta← myDelta + 1

10: memberships[point] ← k
11: end if
12: TxBegin
13: UpdateCenter(centers[k], point)
14: TxEnd
15: end for
16: TxBegin
17: delta← delta + myDelta
18: TxEnd
19: end parallel

Figure 3.7: Pseudocode for kmeans

The labyrinth benchmark implements a variant of Lee’s algorithm similar to the

LEE-TM-p-ws program from [96]. The main data structure is a three-dimensional

uniform grid that represents the maze. In the parallel version, each thread grabs a

start and end point that it must connect by a series of adjacent maze grid points.

Pseudocode for the algorithm appears in Figure 3.9.

The calculation of the path and its addition to the global maze grid are enclosed

by a single transaction. A conflict occurs when two threads pick paths that overlap.

To reduce the chance of conflicts, the privatization technique described in [96] is used.

Specifically, a per-thread copy of the grid is created and used for the route calculation.

Finally, when a thread wants to add a path to the global grid, it revalidates its

work by re-reading all the grid points along the new path. If this validation fails,

the transaction aborts and the process is repeated, starting with a new, updated

copy of the global grid. Transactions are beneficial for implementing this program as

complex deadlock detection and recovery techniques would be required in a lock-based

approach.
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Figure 3.8: Illustration of Lee’s maze routing algorithm. The Start and End point
are indicated by the letters S and E, respectively. During Expand, a breadth-first
search is performed to mark the maze grid points with their distance from S. During
Backtrack, an arbitrary valid path leading from the destination to the source is chosen.
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1: global Queue tasks
2: global Grid maze

3: begin parallel
4: while true do

5: TxBegin
6: task ← tasks.remove()
7: TxEnd
8: if task is null then
9: break

10: end if
11: start← task.start()
12: end← task.end()

13: TxBegin
14: mazeCopy ← maze.copy()
15: TxEarlyRelease(maze) . Read maze while creating copy
16: success← Expand(mazeCopy, start, end)
17: if success then
18: path← Backtrack(mazeCopy, end, start)
19: valid← maze.addPath(path) . Another thread’s path could invalidate ours
20: if not valid then
21: TxRestart . Rollback to TxBegin
22: end if
23: end if
24: TxEnd

25: end while
26: end parallel

Figure 3.9: Pseudocode for labyrinth.
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Additional performance can be achieved in the program by using early-release [46],

a method that is also described in [96]. Early-release allows a transaction to remove

a data address from its transactional read set so that it does not generate conflicts.

However, the programmer or compiler must guarantee that removing the address

from the read set does not violate the atomicity or consistency of the program. In

labyrinth, early-release is used to remove all transactional reads generated when

copying the global grid to the per-thread copy (Figure 3.9, Line 15). As early-release

operates with cache line granularity, each maze grid point is padded to occupy an

entire cache line to ensure correctness. Finally, since early-release is not a feature

available on all TM systems, its use can be disabled when compiling this benchmark.

Overall, almost all of labyrinth’s execution time is taken by the path calculation,

and this operation also reads and writes an amount of data proportional to the number

of total maze grid points. Consequently, labyrinth has very long transactions with

very large read and write sets. Virtually all of the code is executed transactionally,

and the amount of contention is very high because of the large number of transactional

accesses to memory.

3.4.6 ssca2

The Scalable Synthetic Compact Applications 2 (SSCA2) benchmark [4] is comprised

of four kernels that operate on a large, directed, weighted multi-graph. These four

graph kernels are commonly used in applications ranging from computational biology

to security. For STAMP, I focus on Kernel 1, which constructs an efficient graph data

structure using adjacency arrays and auxiliary arrays. This part of the code is well

suited for TM as it benefits greatly from optimistic concurrency.

The transactional version of SSCA2 has threads adding nodes to the graph in

parallel and uses transactions to protect accesses to the adjacency arrays as shown

in Figure 3.10. Since this operation is relatively small, not much time is spent in

transactions. Additionally, the length of the transactions and the sizes of their read

and write sets is relatively small. The amount of contention is the application is
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1: global Array nodes
2: global Array edges

3: begin parallel
4: for all edge in edges.myPartition() do
5: fromIndex← edge.from()
6: toIndex← edge.to()
7: TxBegin
8: node[fromIndex].addChild(toIndex)
9: TxEnd

10: end for
11: end parallel

Figure 3.10: Pseudocode for ssca2.

also relatively low as the large number of graph nodes leads to infrequent concurrent

updates of the same adjacency list.

3.4.7 vacation

This application implements an online transaction processing system similar in design

to SPECjbb2000 [90] but serving the task of emulating a travel reservation system

instead of a wholesale company. Figure 3.11 shows the three-tier organization of

vacation. The system is implemented as a set of trees that keep track of customers

and their reservations for various travel items. During the execution of the workload,

several client threads perform a number of sessions that interact with the travel sys-

tem’s database. In particular, there are three distinct types of sessions: reservations,

cancellations, and updates. Pseudocode for the application is shown in Figure 3.12,

and the usage of transactions is based on the approached described in [28].

Each of these client sessions is enclosed in a coarse-grain transaction to ensure

validity of the database. Consequently, vacation spends a lot of time in transactions

and its transactions are of medium length with moderate read and write set sizes.

Low to moderate levels of contention among threads can be created by increasing the

fraction of sessions that modify large portions of the database. Finally, using trans-

actions greatly simplified the parallel programming process as designing an efficient

locking strategy for all the data structures in vacation is non-trivial.
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Kozyrakis

Mitra

Olukotun

Manager

cancel
reserve
update

Customers

Cars

Hotels

Flights

Client Tier Manager Tier Database Tier

Figure 3.11: The three-tier design of vacation is similar to that found in
SPECjbb2000 [90]. Clients can reserve items, cancel reservations, or update existing
reservations. These task requests are processed by the travel reservation system’s
manager, which updates the database information on customers, cars, hotels, and
flights.
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1: global Manager manager

2: begin parallel
3: for i ∈ [1...N ] do
4: action← RandomAction()
5: items← RandomItems()
6: TxBegin
7: if action is reserve then
8: manager.reserve(items)
9: else if action is cancel then

10: manager.cancel(items)
11: else if action is update then
12: manager.update(items)
13: end if
14: TxEnd
15: end for
16: end parallel

Figure 3.12: Pseudocode for vacation

3.4.8 yada

Meshes of triangles or tetrahedra are commonly used by numerical methods to solve

problems in applications such as graphics rendering or partial differential equation

solvers. A popular method for producing unstructured meshes is Delaunay triangu-

lation, which guarantees meshes with a minimum desired angle while simultaneously

keeping the total number of triangles relatively small. These two properties lead to

the good performance of Delaunay meshes in numerical methods.

Delaunay mesh refinement is a technique for generating Delaunay meshes. It

begins with an initial Delaunay triangulation and then iteratively retriangulates re-

gions of the mesh until the desired minimum angle is reached. Figure 3.13 illustrates

the process of performing Delaunay triangulation on a mesh region that contains a

triangle that is too skinny (as one of its angle is too small).

The yada (Yet Another Delaunay Application) benchmark implements Ruppert’s

algorithm for Delaunay mesh refinement [78]. The basic data structures are a graph

that stores all the mesh triangles, a set that contains the mesh boundary segments,

and a task queue that holds the triangles that need to be refined. In each iteration
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(a) Mesh with skinny triangle. (b) Refined mesh.

Figure 3.13: An example of Delaunay mesh refinement. On the left, the skinny
triangle is indicated by bold line segments. On the right, the bold line segments
represent the retriangulation.

of the algorithm, a skinny triangle is removed from the work queue, its retriangu-

lation is performed on the mesh, and any new skinny triangles that result from the

retriangulation are added to the work queue. If a retriangulation involves a mesh

boundary segment, the mesh boundary segment is first bisected to ensure that the

retriangulation does not generate elements outside of the mesh boundary.

The usage of transactions in yada is shown in Figure 3.14. The transactional

structure is similar to that in [54], but it is applied to a different algorithm in this

benchmark. Accesses to the work queue are enclosed by a transaction as is the

entire refinement of a skinny triangle. As almost all the execution time is spent

calculating the retriangulation of a skinny triangle, this benchmark has relatively

long transactions and spends almost all of its execution time in transactions. While

performing the retriangulation, several triangles in the mesh are visited and later

modified, leading to large read and write sets and a moderate amount of contention.

As yada continuously concurrently modifies a shared graph, it was simpler for me to

parallelize the algorithm with TM than with locks.

3.5 Configurations and Data Sets

One goal for STAMP is to cover a wide range of transactional execution behaviors

in order to stress all aspects of the evaluated TM systems. The differences across
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1: global Mesh mesh
2: global Set segments
3: global PriorityQueue work

4: begin parallel
5: while true do

6: TxBegin
7: element← work.remove()
8: TxEnd
9: if element is null then

10: break
11: end if
12: point← element.center()

13: TxBegin
14: if element is segment then
15: segments.split(element)
16: end if
17: region← mesh.affectedRegion(point)
18: newRegion← region.retriangulate(point)
19: mesh.replaceRegion(region, newRegion)
20: TxEnd

21: TxBegin
22: work.insert(newRegion.badTriangles())
23: TxEnd

24: end while
25: end parallel

Figure 3.14: Pseudocode for yada.
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Table 3.3: Qualitative summary of each STAMP application’s runtime transactional
characteristics: length of transactions (number of instructions), size of the read and
write sets, time spent in transactions, and amount of contention. The description
of each characteristic is relative to the other STAMP applications. A quantitative
characterization appears later in Section 4.2.

Application Tx Length R/W Set Tx Time Contention

bayes Long Large High High

genome Medium Medium High Low

intruder Short Medium Medium High

kmeans Short Small Low Low

labyrinth Long Large High High

ssca2 Short Small Low Low

vacation Medium Medium High Low/Medium

yada Long Large High Medium

the applications discussed above achieve this to some extent: the applications exhibit

different transaction lengths, read and write set sizes, percentage of time spent in

transactions, amount of contention, and working set size. The transactional charac-

teristics of each of the STAMP applications are summarized qualitatively in Table 3.3.

To provide further coverage, I also exploit the fact that several of the applica-

tions exhibit different behavior depending on the size and type of the input data

set and the value of certain configuration parameters. Table 3.4 lists each of the

STAMP applications and their recommended configurations and data sets. There

are six variants of kmeans and vacation to target different levels of contention and

working set sizes. These variants are denoted by appending -low and -high to the

application name to indicate the relative amount of contention. Additionally, the

usage of a larger data set is indicated by adding a ‘+’ to the end of the application

name. Thus, the six variants of kmeans are named kmeans-high, kmeans-high+,

kmeans-high++, kmeans-low, kmeans-low+, and kmeans-low++. For the remainder

of the benchmarks, there are only three variants as increasing the data set size also
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affects the level of contention. For example, bayes has the variants: bayes, bayes+,

and bayes++. Finally, the variants without a ‘++’ suffix are intended for running in

simulation environments.



Chapter 4

Characterizing and Applying the

Stanford Transactional

Applications for Multi-Processing

Most events or actions that seem strange actually have logical explanations. Often-

times, the behaviors of Transactional Memory systems are quite puzzling; however,

a well-designed set of benchmarks can help shed insights on performance bottlenecks

and motivate design improvements. In this chapter, I quantitatively characterize the

runtime transactional characteristics of STAMP to show how it meets the require-

ments of a well-designed TM benchmark suite and then demonstrate how STAMP

can be a useful tool for evaluating TM systems.

4.1 Methodology

Two sets of experiments were used to evaluate STAMP. The first set quantitatively

verifies the coverage of transactional behaviors by the benchmark suite. The second

set demonstrates the portability and practical usefulness of STAMP by running the

suite on several different TM designs and comparing their performance. To ensure

a valid comparison between HTM and STM systems, I used an execution-driven

simulator for all experiments. Table 4.1 presents the main parameters of the simulated

53
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Table 4.1: Configuration for the simulated multi-core system.

Feature Description

Processors 1 to 32 x86 cores, in-order, single-issue

L1 Cache 64KB, private, 4-way associativity, 32B line, 1-cycle access
Provides TM bookkeeping for HTM systems

Network 32B bus, split transactions, pipelined, MESI

L2 cache 8MB, shared, 32-way associativity, 32B line, 12-cycle access

Memory 100-cycle off-chip access

multi-core system I used. The processor model assumes an IPC of 1 for all instructions

that do not access memory. However, the simulator captures all the memory hierarchy

timings including contention and queuing events.

Using the simulator, STAMP was run on the four following TM systems:

• Lazy HTM: This is the HTM system described in Section 2.4.1. It follows the

TCC architecture [41], except that transactions are only executed for code sec-

tions demarcated by transaction boundary markers instead of all code sections.

It implements lazy data versioning in caches and performs conflict detection late

(when a transaction is ready to commit) by using the coherence protocol. Be-

cause the coherence protocol is used for conflict detection, the lazy HTM detects

conflicts at cache-line granularity. When the lazy HTM overflows the caches’

capacity for buffering speculative data, it temporarily serializes the execution

of transactions. On conflicts, the lazy HTM restarts the aborted transaction

immediately, without using any backoff schemes. Note that there is no fun-

damental reason why HTM cannot implement more sophisticated contention

management; not using backoff was just a simple HTM design point I used.

• Eager HTM: The HTM system described in Section 2.4.2. It is similar to

LogTM [65] and uses the L1 caches and the coherence protocol to implement

eager data versioning and early conflict detection, respectively. On conflicts, the

requester loses, aborts, and restarts immediately without any backoff. Conflicts
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are detected at line granularity, and to prevent livelock, transactions are given

high priority after aborting 32 times. There is no fundamental reason why eager

HTM cannot use more sophisticated contention management (e.g., temporarily

stalling transactions), and the previously described policy is simply one I chose.

Finally, overflowed addresses are handled by inserting them into a Bloom fil-

ter [9]. The Bloom filter participates in the conflict detection mechanism and

because of its conservative nature (aliasing of addresses), it may signal false

conflicts.

• Lazy STM: An x86 port of the TL2 STM system [32] that is described in

Section 2.5.1. It performs lazy versioning using a software write buffer. To

provide conflict detection, it uses locks for data in the write set during commit.

Conflicts for data in the read set are detected by checking version numbers

periodically, and after a transaction aborts three times, the lazy STM uses

a randomized linear backoff mechanism. Finally, it detects conflicts at word

granularity and provides weak isolation of transactions.

• Eager STM: An eager version of TL2 as described in Section 2.5.2. It uses an

undo log and holds locks on data in the write set throughout the transaction to

provide versioning. Conflict detection is similar to that of the lazy STM system,

and its conflict management, conflict detection granularity, and weak isolation

policies are the same as in the lazy variant.

I selected these TM systems as representative points in the HTM and STM design

space. The conventional wisdom is that HTM systems should perform the best as

hardware transparently performs all transactional bookkeeping. A previous study

has shown that HTM systems are up to a factor of four times faster than STM [17].

Similarly, it is commonly thought that eager systems should perform better than lazy

systems as eager systems perform their memory updates throughout the transaction,

instead of waiting till the transaction commit point [65, 80].

STAMP was used to evaluate if the conventional wisdom holds for these four TM

designs. A good benchmark suite that stresses a wide range of potential transactional

behaviors may be able to identify unexpected cases in which the conventional wisdom
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is wrong. I used the same code (same parallelization strategy and same transaction

boundaries) with all systems. The STM systems used the optimized annotations

for read and write barriers (explicit barriers), but each of them provided different

code for the actual barrier functionality. When compiling for HTM systems, the

annotations for read and write barriers were ignored (implicit barriers). For the

application configurations and data sets, those without the ‘++’ suffix were used as

those are the ones designed for use with a simulation environment.

4.2 Basic Characterization

In this section, I present a quantitative analysis of the transactional characteristics of

STAMP. Table 4.2 presents the basic runtime statistics for the STAMP applications

and includes data such as the transaction length in instructions, read and write set size

in 32-byte cache lines, percentage of execution time spent in transactions, and average

number of retries per transaction. All of these numbers were measured using the lazy

HTM system in order to shield these statistics from the implementation details of the

barriers necessary for memory accesses to shared variables in STM systems. For the

number of read and write barriers and number of STM retries, however, the STM

was used.

All measured transactional characteristics in Table 4.2 vary at least two orders of

magnitude, thus showing that STAMP is able to cover many different transactional

execution scenarios. In most of the applications, the transactional statistics follow a

normal distribution, but for genome and intruder they are bimodal and for vacation

they are trimodal. The modes that arise in these applications are caused by the phased

nature of their execution.

4.2.1 Transaction Length

The mean number of instructions per transaction ranges from a low of 50 instructions

in bayes to a high of 687,809 in labyrinth+. In labyrinth, the large set of operations
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necessary to find a routing path are packed in a single atomic block. While this coarse-

grain approach greatly simplifies code management, it leads to large transactions. In

addition to labyrinth, bayes and yada also have relatively long transactions.

4.2.2 Read and Write Set Sizes

The sizes of transactional read and write sets were found by running STAMP on

the lazy HTM. The 90th percentile of the data is given as a guide to TM system

designers for sizing their hardware transactional buffers to handle the common case.

The largest read and write set sizes are found in labyrinth+, with values of 783 and

779 cache lines, respectively (24.5 KB and 24.3 KB, respectively). This implies that

for HTM systems, transactional support at the L2 cache may be necessary to avoid

the overhead of virtualization mechanisms, especially because of associativity misses.

At the other extreme is ssca2 with a read set of 10 lines and a write set of 4 lines.

Since most of the write sets are small, not stalling conflicting transactions in my eager

HTM is acceptable since applying the undo log is not too expensive.

The numbers of read and write barriers were measured with the lazy STM and

would have been identical had the eager STM been used instead. The number of

read barriers varies from a low of 1 in ssca2 to a high of 608 in vacation-high+. In

comparison, the statistics for the write barriers range from 2 in genome and ssca2

to 108 in yada. Overall, the number of read barriers is typically much larger than

the number of write barriers, suggesting that designers of STMs should especially

implement read barriers with low overhead.

4.2.3 Time in Transactions

Over 80% of the execution time is spent in transactions by five of the eight applica-

tions: bayes, genome, labyrinth, vacation, and yada. These applications use trans-

actions frequently as their algorithms continuously operate on shared data structures.

Such applications put great stress on the underlying TM system as any inefficiencies

will be amplified by the frequent use of transactions. STAMP also covers applications

that use transactions sporadically. Three of the benchmarks (intruder, kmeans, and
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ssca2) spend less than half of their execution time in transactions, as there are sig-

nificant portions of the code that operate on easily-identified private data. Over all

the STAMP applications, the time spent in transactions ranges from a low of 3% in

kmeans-low to a high of 100% in labyrinth and yada.

4.2.4 Transaction Retries

The last transactional characteristic measured in Table 4.2 is the average number of

times a transaction retries before successfully committing. This statistic was mea-

sured by using 16 threads on the four TM systems, and it is highly dependent on

both the number of threads and the underlying TM system. Moreover, the actual

amount of work lost is a function of both the number of retries and the point in the

transaction at which the retry occurs. Nevertheless, the data for the number of retries

gives quantitative evidence that the STAMP applications cover a wide spectrum of

contention cases ranging from virtually no retries (<0.01 for ssca2+) to 10.59 retries

for labyrinth+. Finally, good contention management policies should be able to

reduce the number of retries in most of the TM systems, and the numbers for this

transactional characteristic show that STAMP can be used to evaluate contention

management policies as well.

4.2.5 Working Set Size

The last two columns of Table 4.2, indicate two of the working sets exhibited by each

of the programs. These values were found by setting the cache size to all power-of-2

sizes from 16 KB to 64 MB and looking for points at which significant changes in the

miss rate occurred. Like the other columns in the table, these values cover a variety of

different scenarios. Applications in which the small working set exceeds the capacity

of the L1 cache (e.g., ssca2 and vacation) are likely to have a significant portion of

the execution time spent on cache misses.
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4.3 HTM and STM Performance Analysis

I measured the performance of 20 variants of the STAMP applications on the four

TM systems as I varied the number of cores from 1 to 32. The speedup curves

(normalized to sequential execution with code that does not have extra overhead

from the annotations for threads, transactions, or barriers) are shown in Figure 4.1.

4.3.1 bayes

This application has the interesting result that the relative performance among the

TM systems is the opposite of the expected ranking. As shown in Table 4.2, bayes

has relatively large read and write sets. Consequently, both of the HTMs experience

overflows (about 10% of the transactions) and suffer large performance hits.

In particular, the lazy HTM handles overflows by temporarily serializing execution

of transactions and the eager HTM handles overflows by using a Bloom filter [9] to

summarize the overflowed addresses. Because the Bloom filter is conservative in

nature, it can cause the eager HTM to abort transactions more than necessary (but

never less). Transaction aborts are especially expensive in eager data versioning TM

systems as they have to process the undo logs to rollback a transaction.

As a result, the eager HTM performs the worst among all the TM systems and

the lazy HTM does not perform much better. In contrast, because the STMs imple-

ment data versioning in software, they have almost no overflow-related performance

penalties and perform much better than the HTMs.

The last thing to note about bayes is that the execution time is sensitive to the

order in which dependencies are learned. Thus, the speedup curves are not as smooth

as those for other STAMP applications.

4.3.2 genome

Early conflict detection turns out to be disadvantageous in genome. For example, the

eager STM has an average number of retries per transaction almost 20× that of the
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Figure 4.1: STAMP speedups over sequential code on each of the HTM and STM
implementations. Application variants that use the larger data set are indicated by a
‘+’ appended to the application name. The suffixes -low and -high indicate variants
with low and with high contention, respectively.
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lazy STM. This causes the eager STM to experience a high number of aborts and

suffer from livelock.

In comparison, the eager HTM’s contention management policy prevents it from

falling prey to this pathology. In particular, when a transaction aborts several times

in the eager HTM, the eager HTM system promotes the transaction’s priority level

and prevents any other transactions from aborting it. This technique allows the eager

HTM to continue making forward progress and results in its good performance on

genome. Overall, the HTMs are about twice as fast as the lazy STM, and the eager

STM fails to scale because its eager conflict detection results in livelock. Finally, the

performance of the eager STM on genome will likely improve with a better contention

management policy that addresses livelock problems.

4.3.3 intruder

One advantage that the STMs have over the HTMs arises under workloads with high

contention. TMs with a software component can have more sophisticated contention

management policies, and in particular, the STMs use a randomized linear backoff

scheme after a transaction aborts. Additionally, the overhead caused by resetting

the transaction state in software (e.g., processing the software undo logs) also serves

as a backoff mechanism. In contrast, the two HTM implementations do not use a

backoff scheme and simply restart the transaction as soon as possible. Not having a

sophisticated contention management policy is not intrinsic to HTM, and I just chose

to have a simple design.

Among the STAMP applications, intruder has a relatively high amount of con-

tention. Thus, whereas the performance of the STMs follow expected behavior, the

HTMs do not perform as well as anticipated. The effect is more pronounced in the

eager HTM, because aborts are more expensive in an eager scheme (time to apply the

undo log). The early conflict detection in eager HTM also causes this program to suf-

fer from livelock. Hence, for this application, there is an HTM system (eager HTM)

that performs worse than the STMs, and neither of the HTMs scale beyond 8 cores.
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Overall, the lazy HTM performs the best, and with more sophisticated contention

management, the HTMs will likely scale better on this benchmark.

4.3.4 kmeans

In this benchmark, all four TM systems scale similarly and their relative performance

follows the expected behavior; however, the actual speedups differ greatly. Because

kmeans uses transactions infrequently and has relatively short transactions with few

conflicts, the performance difference between the corresponding eager and lazy vari-

ants is very small for the HTM designs. For the STMs, however, the eager variant is

noticeably faster than the lazy one because the eager STM has shorter read barriers

(the read barrier in the lazy STM must first search in the write buffer to check if the

data have been previously written within the same transaction). Overall, the HTMs

perform 2–4× better than the STMs.

4.3.5 labyrinth

In this benchmark, early-release is used to remove the reads generated by the grid

copying operation from the transactional read set. The usage of early-release is neces-

sary for the HTMs as all memory accesses are transparently tracked by the hardware

(i.e., implicit barriers). For the STMs, however, the TM system relies on the an-

notation of accesses to shared objects with read and write barriers. Thus, by not

using any read barriers to perform the grid copying, the STMs avoid the need for an

early-release pass over all the grid points. As a result, the number of read and write

barriers is only proportional to the length of the routed path instead of to the total

number of grid points. Therefore, since there are relatively few TM barriers, all the

TM systems perform similarly, with the HTMs slightly worse than the STMs because

of the extra early-release pass.

Performance differences among the TM systems occur in labyrinth+ because of

the larger data set. As noted in Section 4.2, the transactional read and write sets for

labyrinth+ are comparable to the size of the L1 cache. This causes both HTMs to

overflow (about 30% of the transactions) and pay performance penalties. Moreover,
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recall that the eager HTM handles overflows by recording overflowed addresses in a

Bloom filter. To ensure correctness, the eager HTM cannot perform early-release on

addresses that hit in the Bloom filter. This causes the eager HTM to perform worse

than the lazy HTM as its transactions abort more frequently. In contrast to the

HTMs, the STMs do not experience overflow-related performance problems as the

data versioning is handled in software. Thus, their performance is about the same as

with the small data set.

4.3.6 ssca2

Like kmeans, ssca2 has very short transactions with very small read and write sets,

and less than 20% of the execution time is spent in transactions. Consequently, all

TM systems perform well and operate with minimal overhead. Overall, the relative

ranking among the four TM systems is as expected.

4.3.7 vacation

All the TM systems follow the expected behavior in vacation except for the eager

HTM. As in bayes, conflict detection at a finer granularity is particularly advanta-

geous, and Table 4.2 shows that the STMs’ word-level granularity conflict detection

leads to much fewer aborts than the HTMs’ line-level granularity conflict detection.

However, for the STMs, the performance advantage gained by finer granularity con-

flict detection is outweighed by the overhead caused by the large number of read

barriers used to provide concurrent accesses to the database trees.

Finally, for the HTMs, lazy data versioning is more advantageous than eager data

versioning. In the latter scheme, transaction aborts are more expensive as an eager

data versioning TM system must apply undo logs to rollback a transaction. Thus,

when coupled with the moderately long transactions in vacation, the eager HTM

performs much worse than the lazy HTM. At 32 cores in vacation-high, the large

amount of work lost to violations in the eager HTM even causes its performance to

fall below that of the STMs.
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4.3.8 yada

In yada, transactions have relatively large read and write sets, which cause the HTMs

to suffer from overflows. In the lazy HTM, overflows cause temporary serialization

of transactions, and in the eager HTM, overflows cause more frequent transaction

aborts. On the other hand, the large numbers of read and write barriers do not cause

the STMs to incur a significant performance penalty.

As a result, in yada the lazy HTM performs the best and the eager HTM’s speedup

is about the same as the STMs. With the larger data set in yada+, however, overflows

are more expensive because transactions are longer. This causes the lazy HTM to

serialize transactions for longer periods of time and the eager HTM to lose more

work to transaction aborts. Because of this, the eager STM is able to outperform

both HTMs. The lazy STM, however, still has the worst performance because the

application’s large read set causes the read and commit barriers to have significant

overhead.

4.4 HTM and STM Performance Summary

In general, the applications in STAMP performed well with all four TM systems. In

most cases, there were significant speedups and the relative differences among HTM

and STM systems were as expected. However, there were a few cases where conven-

tional wisdom did not hold. In bayes and labyrinth+, for example, the performance

of the HTMs suffered because the large number of transactional reads generated over-

flows, causing either transaction execution to become serialized (lazy HTM) or exces-

sive aborts to occur (eager HTM). In bayes, the finer granularity in conflict detection

allowed STMs to unexpectedly outperform the HTMs. Comparing the HTM systems,

the results indicate that the two schemes (eager and lazy) either perform similarly

(e.g., genome and kmeans), or the lazy HTM system performed better as it guarantees

forward progress in high contention scenarios (e.g., intruder and vacation-high).

Finally, none of the shortcomings identified above in the four TM systems are

necessarily fundamental. Future research may be able to address them and remove the
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resulting performance loss. The key point is that STAMP’s coverage of a diverse set

of scenarios in transactional execution allows us to stress each TM system thoroughly

and identify its (sometimes unexpected) shortcomings. Hence, STAMP can be a

valuable tool for future research on TM systems.



Chapter 5

Signature-accelerated

Transactional Memory

All Transactional Memory systems implement two basic mechanisms: data versioning

and conflict detection. HTM systems use hardware caches for data versioning and

leverage cache coherence protocols to provide conflict detection among concurrent

transactions [41, 65]. Since the processor can transparently track loads and stores

for the transactional bookkeeping, HTMs have low transactional overhead; however,

the complexity and cost of redesigning the caches and coherence protocols to sup-

port TM can be significant. In contrast, STM adds instrumentation code (read and

write barriers) to interact with an STM software library [32, 43, 80]. Since STMs are

software-based, they are more cost-effective and flexible than HTMs; however, the

software barriers and libraries incur much greater overhead.

Another important difference between HTM and STM is in their semantics. Strong

isolation is the property where a TM system guarantees that code in transactions runs

isolated from both transactional and non-transactional code [56]. HTMs naturally

have strong isolation as the processor sees all memory accesses. On the other hand,

STMs must add extra instrumentation code on non-transactional loads and stores

to provide strong isolation. Since this is an additional source of overhead, high-

performance STMs often sacrifice strong isolation. As a result, these STM systems

may produce incorrect or unpredictable results even for simple parallel programs that

67
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would work correctly with lock-based synchronization [34, 56, 86]. For STMs that do

provide strong isolation, however, it is possible for compilers to reduce some of this

overhead [86], but these techniques are not applicable to all languages and runtimes.

Given the desirable traits of TM and the tradeoffs between HTM and STM, an

ideal system would be a hybrid design that combines the performance and seman-

tics of HTM with the flexibility and cost-effectiveness of STM. Signature-accelerated

Transactional Memory (SigTM) is a new hybrid TM design that achieves this by us-

ing small hardware signatures to accelerate software transactions and transparently

provide strong isolation.

5.1 HTM and STM Overhead

STM transactions run slower than HTM transactions due to the overhead of software-

based versioning and conflict detection. Even though the two systems may allow the

same degree of concurrency and exhibit similar scaling, the latency of individual

transactions is a key parameter for the overall performance. Figure 5.1 shows the ex-

ecution time breakdown for the lazy STM running on a single processor (no conflicts

or aborts), and Figure 5.2 displays the corresponding data for the eager STM. Execu-

tion time is broken into “busy” (useful instructions and cache misses) and time spent

in the STM to perform transaction commit, write barriers, read barriers, and other

miscellaneous functions (e.g., starting a transaction). The execution time shown is

normalized to that of the sequential code.

On average, the lazy and eager STMs are slower than sequential code by 2.95×
and 2.27×, respectively, on STAMP. However, in applications like vacation, the STM

overhead can be very significant and cause slowdowns of up to 7.4×. In contrast, the

overhead of HTM execution on one processor is less than 5% for both HTM systems

on all of the STAMP applications. The only two applications that do not suffer

significant STM overhead are bayes and labyrinth. As Table 4.2 shows, these two

applications touch a relatively small amount of data for the amounts of work done in

their transactions and are thus able to amortize the cost of the TM barriers.
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Figure 5.1: The lazy STM execution time breakdown for a single processor run. Ex-
ecution time is normalized to that of the sequential code without transaction markers
or read/write barriers.

Overall, the biggest bottleneck for STM is the maintenance and validation of the

read set that occurs on each read barrier. Even after optimizations, the overhead is

significant for transactions that read non-trivial amounts of data (e.g., vacation).

In the lazy STM, the read barriers also have a secondary source of overhead. Since

main memory is lazily updated by transactions, read barriers must first search the

data versioning log for the most recent value. Fortunately, the software Bloom filter

used by the lazy STM eliminates most unnecessary searches.

The other significant bottleneck occurs during the commit barrier. The lazy STM

needs to perform three traversals of the write set: first to acquire locks, then to write

the data versioning log to memory, and finally to release the locks. A pass must also

be made over the read set to revalidate it. In comparison, the eager STM only needs

to make one pass over the write set (to release its locks), but it still must perform a

pass over the read set. Lock handling is expensive as it involves atomic instructions

and causes additional cache misses and coherence traffic.
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Figure 5.2: The eager STM execution time breakdown for a single processor run. Ex-
ecution time is normalized to that of the sequential code without transaction markers
or read/write barriers.

A third important factor (not shown in Figures 5.1 and 5.2) is that an STM

transaction may not detect a conflict until it validates its read set during transaction

commit. This is because a read by an ongoing transaction is not visible to any other

transaction committing a new value for the same address. As a result, these invisible

reads increase the amount of work wasted on aborted transactions.

Manual or compiler-based optimizations can be used to reduce STM overhead [1,

44]. For example, redundant barriers can be removed via common subexpression

elimination or unnecessary barriers can be eliminated by identifying immutable or

thread-local variables. Nevertheless, even optimized STM code must execute a barrier

for each unique shared variable and a barrier to commit the transaction. A special

case occurs for read-only transactions, in which read barriers do not need to be

executed [32]. Unfortunately, read-only transactions are not the common case in

most applications.
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In HTMs, hardware support eliminates most overhead for transactional book-

keeping. No additional instructions are needed to maintain the read set or write set.

Loads check the write set automatically for the latest values. Read set validation

occurs transparently and continuously as coherence requests are processed. Thus,

the number of cycles wasted on aborted transaction execution is minimized. Finally,

only a single pass is required to apply the data versioning log to main memory. On

the other hand, HTMs may experience performance challenges on transactions whose

read set and write set overflow the available cache space or associativity. There are

several proposed techniques that virtualize HTM systems using structures in virtual

memory [27,29,71].

5.2 Strong Isolation

The differences between HTM and STM extend beyond performance. An important

property for TM systems is whether they provide strong isolation for transactions.

For a transaction to be strongly isolated, it must be isolated from non-transactional

memory accesses in addition to transactional ones. With this property, a TM system

provides a consistent ordering among transactional and non-transactional memory ac-

cesses, allowing programmers to predict how the transactional and non-transactional

code blocks in their program will interact.

High-performance STM systems typically forsake strong isolation because it re-

quires instrumentation of all memory accesses and thus adds to the already high STM

overhead. Without strong isolation, STMs may fall prey to different dangers depend-

ing on the eager data versioning and conflict detection schemes implemented and on

the interleaving of transactions and non-transactional memory accesses.

Figure 5.3 shows three scenarios that lead to unpredictable results with the lazy

STM. The first scenario illustrates non-repeatable reads. Because Thread 2 does not

use a write barrier, Thread 1’s transaction cannot detect the read-write conflict on

variable x. Thus, for the ordering shown, t1 and t2 will get different values, whereas

the expectation is that they are equal. The second scenario is similar to the first, but

shows how lost updates can occur. The two acceptable outcomes of the code result
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Assume that initially x == y == 0

// Thread 1

atomic {

t1=x;

...

t2=x;

}

// Thread 2

...

...

x=100;

...

...

// Thread 1

atomic {

t=x;

...

x=t+1;

}

// Thread 2

...

...

x=100;

...

...

// Thread 1

atomic {

x+=100;

y+=100;

...

}

// Thread 2

...

...

...

...

t=x+y;

(a) Non-repeatable Reads (b) Lost Updates (c) Overlapped Writes

Figure 5.3: Isolation and ordering violation cases for the lazy STM system.

with x having the value 100 (Thread 1 before Thread 2) or the value 101 (Thread 1

after Thread 2). However, without strong isolation, Thread 1 will load the value 0 to

t, not see the conflicting write from Thread 2, and then leave x with t’s incremented

value of 1. The last example illustrates overlapped writes and has Thread 2 reading

x and y without using read barriers while Thread 1 lazily commits its transactional

stores. Thus, it is possible for Thread 2 to see the new value for x and the old value

of y or vice versa.

The examples in Figure 5.3 can be dismissed as examples of data races that occur

even if the transactions are replaced with locks. In [56], Larus and Rajwar present

the simple race-free code example shown in Figure 5.4. In this program, Thread 1

uses a transaction to remove the head of a linked list and then uses the privatized

value several times after the transaction. Meanwhile, Thread 2 uses a transaction to

increment all the elements in the linked list. The two acceptable outcomes of this

code are that either Thread 1 sees only the unincremented value when using res.val

and Thread 2 operates on the shortened list (Thread 1 before Thread 2) or Thread 1

uses only the incremented value and Thread 2 operates on the entire list (Thread 1

after Thread 2). This simple program may run incorrectly on TM systems without

strong isolation, but always works correctly if the transactions are replaced by locks.

The lack of strong isolation causes this code to behave unpredictably with all STM

approaches [56]. As the two threads execute concurrently, lhead is included in the

write set for Thread 1 and the read set for Thread 2. For TM systems with lazy data

versioning, suppose that Thread 2 initiates its transaction commit, where it locks

all the .val variables in the list, including lhead.val, and it verifies all variables
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// Thread 1
ListNode res;
atomic {

res = lhead;
if (lhead != null)

lhead = lhead.next;
}
use res.val multiple times;

// Thread 2
atomic {

ListNode n = lhead;
while (n != null) {

n.val ++;
n = n.next;

}
}

Figure 5.4: The code for the privatization scenario that leads to unpredictable be-
havior on TM systems that do not provide strong isolation.

in its read set have not changed in memory, including lhead. While Thread 2 is

copying its large write set, Thread 1 starts its commit stage. It locks its write set

(lhead), validates its read set (lhead and lhead.next), and commits the new value

of lhead. Subsequently, Thread 1 uses res.val outside of a transactional block as it

believes that the element has been privatized by atomically extracting from the list.

Depending on the progress rate of Thread 2 with copying its write set, Thread 1 may

get to use the non-incremented value for res.val a few times before finally observing

the incremented value committed by Thread 2.

The problem still occurs in TM systems with eager data versioning, but with a

different interleaving of operations. Suppose that Thread 2 has already incremented

lhead.val and is in the middle of incrementing all the elements of the list. At

this point, Thread 2 has locks on all the .val fields it has incremented, including

lhead.val. Meanwhile, Thread 1 starts its transaction, reads lhead and lhead.next

and locks lhead before updating it. Thread 1 successfully validates its read set (lhead

and lhead.next), commits its transaction, and begins using the incremented value

of res.val. When Thread 2 wants to commit, it validates its read set and detects

the update made to lhead made by Thread 1. Thread 2 then aborts its transaction

and restores all the old unincremented .val fields of the list elements, including that

of the original lhead that was removed by Thread 1 earlier. Consequently, Thread 1

now observes the unincremented value of when using res.val.

The privatization example in Figure 5.4 is not a unique case of race-free code that

executes unpredictably without strong isolation. For example, the complementary
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scenario, publication, where a thread makes a private object globally visible, can also

lead to unpredictable results [86]. Another source of correctness issues is that many

STM systems do not validate their read set until they reach the commit stage. Hence,

it is possible to have a transaction that uses a pointer that has been modified in the

meantime by another transaction. This series of actions can potentially result in an

infinite loop or a memory exception [34].

Strong isolation can be implemented in an STM by using additional read and write

barriers for non-transactional accesses memory accesses. The resulting performance

degradation can be minimized by using compiler analysis to identify private data and

data never accessed transactionally. In [86], Shpeisman et al. show their optimizations

are able to reduce the overhead of strong isolation from 180% to 40% on a set of Java

programs. Unfortunately, an overhead of 40% is still significant as it is in addition to

the already high overhead experienced by STMs. Moreover, for workloads that use

transactions more frequently or for unmanaged languages such as C++, the overhead

will be higher. If strong isolation forces programmers to pick between performance

and correctness, it has failed to deliver on the basic promise of TM: simple-to-write

parallel code that performs well.

In contrast to STMs, HTM systems naturally implement strong isolation as all

memory accesses, whether in transactions or not, are visible through the coherence

protocol and can be properly handled. For the cases in Figure 5.3 (a) and (b), the

write to x by Thread 2 on the HTMs will generate a coherence request for exclusive

access. If Thread 1 has already read x, the coherence request will facilitate conflict

detection and will cause Thread 1 to abort and re-execute its transaction. For the

case in Figure 5.3.(c), once the transaction in Thread 1 is validated, it will generate

NACKs to any incoming coherence request (shared or exclusive) for an address in its

write set. Hence, Thread 2 will either read the new or old values for both x and y.

The HTMs also correctly execute the privatization code in Figure 5.4 as Thread 1

cannot read partially committed state from Thread 2.
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5.3 Signature-accelerated Transactional Memory

An ideal TM system would be one that combined the advantages of HTM (per-

formance and semantics) with the advantages of STM (low cost and flexibility).

Signature-accelerated Transactional Memory (SigTM), is a hybrid TM system that

uses small hardware signatures to reduce the runtime overhead of software transac-

tions and transparently provide strong isolation and ordering guarantees. In more

detail, SigTM features:

1. High performance: SigTM uses hardware signatures to conservatively repre-

sent the read set and the write set. Cache coherence messages are looked up

in the signatures to provide conflict detection. Thus, much of the overhead is

removed from the software barriers.

2. Flexibility: The only transactional policy that SigTM embeds in hardware is

conflict detection. All other transactional functionality (such as data versioning

and conflict management) is implemented in software and can easily be changed.

3. Low cost: SigTM requires no modifications to the hardware caches, which

reduces hardware cost and simplifies support for features such as nesting and

multithreaded cores.

4. Strong isolation: SigTM leverages the cache coherence protocol for con-

flict detection and thus can detect conflicts for both transactional and non-

transactional memory accesses.

5.4 Hardware Signatures

In SigTM, each hardware thread has two signatures: one for transactional reads and

one for the transactional writes. On read barriers, the read address is inserted into

the read signature, and on write barriers, the written address is inserted into both the

write signature and the software versioning log. Table 5.1 summarizes the instructions

used by software to manage the signatures. Software can reset each signature, insert
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Table 5.1: The user-level instructions for management of read and write signatures
in SigTM.

Instruction Description

readSigReset Reset all bits in read set or write set signature
writeSigReset

readSigInsert r1 Insert the address in register r1 in the read set or write set signature
writeSigInsert r1

readSigMember r1 r2 Set register r2 to 1 if the address in register r1 hits in the read set or
write set signaturewriteSigMember r1 r2

readSigSave r1 Save a portion of the read set or write set signature into register r1
writeSigSave r1

readSigRestore r1 Restore a portion of the read set or write set signature from register r1
writeSigRestore r1

fetchExclusive r1 Prefetch address in register r1 in exclusive state; if address in cache, up-
grade to exclusive state if needed.

an address, check if an address hits in the signature, and save/restore its content.

The last instruction in Table 5.1 allows software to prefetch or upgrade a cache line

to one of the exclusive states of the coherence protocol (E for MESI). If the address

is already in the M or E state, the instruction has no effect.

Each signature is Bloom filter [9] that uses a fixed-size register to record a set of

addresses. To insert address A in a signature, hardware first truncates the cache line

offset from the address. Next, it applies one or more hash functions on the remaining

bits. Each function identifies one bit in the signature to be set to one. The insertion

of an address into a signature is depicted in Figure 5.5. To check address A for a

hit, the hardware truncates the address and applies the same set of hash functions.

If all identified bits in the signature register are set, A is considered a signature hit.

Figure 5.6 illustrates a series of basic operations on a Bloom filter.

During transaction execution in SigTM, cache coherence messages are looked up in

the signatures to check for conflicts between transactions. A user-level configuration

register per hardware thread is used to select if addresses from shared and/or exclusive

requests should be looked up in the read set and/or write set signatures. If the enabled

signature lookup returns a hit, the hardware signals a conflict and control is passed
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Figure 5.5: Inserting an address into a signature.

hash1(x) = x mod 8
hash2(x) = (x⊕ 2x) mod 8
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(b) Insert 1: hash1(1)→ 1;hash2(1)→ 3
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(c) Insert 3: hash1(3)→ 3;hash2(3)→ 5

hash1(1) → 1 = set ⇒ hit
hash2(1) → 3 = set

(d) Lookup 1

hash1(5) → 5 = set ⇒ miss
hash2(5) → 7 = clear

(e) Lookup 5

hash1(9) → 1 = set ⇒ false hit
hash2(9) → 3 = set

(f) Lookup 9

Figure 5.6: Operations on an 8-element Bloom filter with two hash functions. Dashed
outlines indicate clear elements and solid outlines are set. Time progresses from (a)
to (f). Note that aliasing of element 3 occurs in (c). In (e) a miss occurs because
element 7 is not set. A false hit occurs in (f) because 9 was not inserted earlier.
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to a preregistered user-level software handler. To avoid repeated invocations of the

handler that prohibit forward progress, coherence lookups are temporarily disabled

when the handler is invoked. The configuration register also indicates if coherence

requests that hit in the write set signature should be acknowledged by the local cache

or should receive a NACK reply.

Because of aliasing from its hash functions, Bloom filters can cause signature mem-

bership lookups to return false positives (but never false negatives). Note, however,

that although false positives hurt performance, correctness is still assured because

all true conflicts are detected by the signatures. The frequency of false positives

can be reduced by increasing the signature length and adjusting the choice of hash

functions. Furthermore, because the implementation of the Bloom filter is abstracted

from the SigTM and application code, no recompilation of software is necessary when

modifications to the hardware Bloom filters are made.

In summary, apart from hardware signatures and the NACK mechanism in the

coherence protocol, SigTM requires no further hardware support. It is important to

note that caches are not modified in any way.

5.5 Operation

To explain how SigTM operates, I will first describe a variant based on a lazy opti-

mistic STM running on a system with broadcast coherence. Later in Section 5.8, I

will explain how SigTM can be implemented using other STMs or systems. As one

of many hybrid transactional memory designs, SigTM is unique because it presents a

standalone and unified implementation. In other words, unlike other hybrid propos-

als [31, 55, 79], there is no backup STM, no switch between HTM and STM modes,

and no fast versus slow code paths.

The SigTM hardware makes the global version clock and the software locks in the

base lazy STM unnecessary. The software read set is also eliminated, but the data

versioning is still done by software in order to buffer the write set until transaction

commit. Contention management in SigTM is similar to that in the base STM, and it
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retries aborted transactions after a randomized linear delay. Pseudocode summarizing

the operations of software transactions in lazy SigTM is shown in Figure 5.7.

To start a transaction, LazySigTMtxStart (Figure 5.7, Line 1) requires two op-

erations. First a hardware register checkpoint is made to allow a rollback if the

transaction is aborted later. Second, lookups are enabled in the read signature for

any exclusive cache coherence messages. If any of these lookups hit in the read signa-

ture, an exception is raised to indicate a conflict, and control is passed to the SigTM

software. During transaction execution, cache coherence messages are not looked up

in the write signature until transaction commit.

Accesses to shared variables in transactions are made using read and write barriers.

LazySigTMreadBarrier (Line 5) first searches for the address is in the write set and

uses the write signature as a quick test to avoid most unnecessary searches. If the

address is not in the write set, the address is inserted in the read signature and then

the value is read from memory. In LazySigTMwriteBarrier (Line 12) the address is

inserted in the write signature and then the address and new value are added to the

write set.

To commit a transaction, LazySigTMtxCommit (Line 16) has two phases: a val-

idation phase followed by a writeback phase. In the validation phase, lookups of

exclusive and shared coherence messages in the write signature are first enabled. A

scan of the write set is then performed to call fetchExclusive on every written ad-

dress. This validates the transaction by removing the corresponding cache line from

other processors. Note that a fetchExclusive may replace the line brought by an-

other fetchExclusive access without any correctness issue; correctness is achieved

by removing the line from the caches of other processors and not by having a cached

local copy. If any coherence messages hit in the write signature, a software handler

is invoked that restarts the validation from scratch after a randomized backoff pe-

riod. Coherence messages that hit in the read signature still cause the transaction

to abort, however. After the fetchExclusive pass completes, the NACKing of any

coherence requests that hit in the write signature is enabled. The validation phase

then completes by clearing the read signature and disabling coherence lookups in the

read signature.
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1: procedure LazySigTMtxStart
2: checkpoint()
3: enableReadSiglookup(EXCLUSIVE)
4: end procedure

5: procedure LazySigTMreadBarrier(addr)
6: if writeSigMember(addr) and writeSet.member(addr) then
7: return writeSet.lookup(addr)
8: end if
9: readSigInsert(addr)

10: return Memory[addr]
11: end procedure

12: procedure LazySigTMwriteBarrier(addr, data)
13: writeSigInsert(addr)
14: writeSet.insert(addr, data)
15: end procedure

16: procedure LazySigTMtxCommit
17: enableWriteSigLookup(EXCLUSIVE | SHARED)
18: for all addr in writeSet do
19: fetchExclusive(addr)
20: end for
21: enableWriteSigNack(EXCLUSIVE | SHARED)
22: readSigReset()
23: disableReadSiglookup()
24: for all addr in writeSet do
25: Memory[addr] ← writeSet.lookup(addr)
26: end for
27: writeSigReset()
28: disableWriteSigNack()
29: disableWriteSigLookup()
30: end procedure

31: procedure LazySigTMtxAbort
32: readSigReset()
33: disableReadSiglookup()
34: writeSigReset()
35: disableWriteSigLookup()
36: doContentionManagement()
37: restoreCheckpoint()
38: end procedure

Figure 5.7: Pseudocode for the basic functions in lazy SigTM.
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Table 5.2: The minimum dynamic instruction counts for the lazy STM and lazy
SigTM barriers. R and W represent the number of words in the transaction read set
and write set, respectively.

Read Barrier Write Barrier Commit Barrier

Lazy STM 41 40 72 + 12R + 51W
Lazy SigTM 8 27 34 + 11W

At this point, both the read set and write set are validated and the writeback

phase can begin. A pass is made over the write set to update main memory with the

contents of the data versioning buffer. After this completes, the transaction finally

finishes committing by resetting the write signature and disabling any coherence

lookups in and NACKs from the write signature.

5.6 Performance

SigTM executes the same number of barriers as STM; however, the overhead of

SigTM’s barriers is significantly lower as conflict detection is handled by hardware

instead of software. Table 5.2 presents the minimum dynamic instruction counts for

STM and SigTM barriers with lazy data versioning.

SigTM is able to significantly accelerate read barriers and commit barriers, the

two biggest sources of overhead for STM. SigTM accelerates read barriers by replacing

the software read set with a hardware read signature and by eliminating the need for

time stamp and lock checks. The commit barrier overhead is reduced as the write set

is traversed twice instead of three times and there is no need for read set validation

in software. Moreover, instead of performing expensive atomic operations to acquire

and release locks, SigTM uses the much faster fetchExclusive operation. Finally,

SigTM does not provide a large performance improvement for the write barriers.

It eliminates the need for time stamp and lock checks but still has to manage the

software write set.
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Another advantage of SigTM is that the coherence lookups in signatures during

transaction execution allow a transaction to detect read conflicts when other trans-

actions commit instead of when it commits itself. This continuous validation reduces

the amount of doomed execution cycles because doomed transactions restart sooner.

SigTM’s performance challenge comes from the admission of false positives when

performing conflict detection. When these occur, transactions waste useful work by

unnecessarily aborting. False positives can occur if a program’s memory access pat-

terns interact negatively with the hash functions used to implement the signatures.

However, since the signatures’ implementation is abstracted from software, the sig-

natures’ lengths can be increased and hash function adjusted in future generations

to reduce the likelihood of false positives. An additional source of false conflicts oc-

curs because SigTM leverages the cache coherence protocol for conflict detection and

thus performs conflict detection at cache line granularity. HTMs also perform conflict

detection at line granularity, but STMs typically employ word or object granularity.

5.7 Strong Isolation

To achieve strong isolation, a TM system must detect and handle non-transactional

accesses to its read and write sets in addition to transactional accesses. By using

its signatures, SigTM provides strong isolation and ordering guarantees for software

transactions without additional instrumentation of code outside of transactions. Both

non-transactional and transactional writes generate coherence messages that cause

lookups in the signatures and signal conflicts if necessary.

Non-transactional writes to the read set are handled by looking up exclusive co-

herence requests in the read signature. This eliminates non-repeatable reads and lost

updates (Figure 5.3, (a) and (b), respectively). In both cases, the non-transactional

write performed by Thread 2 generates an exclusive coherence message that hits in

the read signature of Thread 1. This causes Thread 1 to abort and retry its trans-

action, which leads to one of the expected final outcomes. This continuous read set

validation also prevents SigTM from executing on inconsistent state that would lead
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to infinite loops or memory faults. Finally, non-transactional reads to the read set do

not need to be handled as they do not create conflicts.

SigTM’s write signature takes care of non-transactional reads and non-transactional

writes to the write set. The overlapped writes example in Figure 5.3 and the pri-

vatization example in Figure 5.4 result in unpredictable behavior because a non-

transactional read is allowed to view only part of the transaction’s modifications to

memory. In SigTM, this problem is fixed by having the write signature NACK any

coherence requests that hit in it during the writeback phase of transaction commit.

Note that NACKing requests for an address is equivalent to holding a lock on it and

can cause serialization and performance issues. SigTM uses NACKs only during write

set copying, which is typically a relatively short event.

5.8 Alternative Implementations

This section discusses the implementation of SigTM using alternative STMs or multi-

core systems.

5.8.1 Lazy vs. Eager Data Versioning

Thus far, I have discussed the design of SigTM based on a lazy STM, but SigTM can

also be built on top of an STM with eager data versioning. In an STM with eager

data versioning, writes within a transaction update memory directly and the original

values are kept in an undo log in case the transaction needs to rollback. SigTM

implements data versioning in software, so no hardware changes need to be made to

implement an eager variant of SigTM.

In eager SigTM, the signatures are used slightly differently than in the lazy variant.

Figure 5.8 presents pseudocode for all the basic functions in eager SigTM. Cache

coherence messages need to be looked up in the write signature in addition to the

read signature throughout the duration of the transaction. Any coherence requests

that hit in the write signature are NACKed. Eager SigTM’s read barrier is the same as

in lazy SigTM, but in the write barrier, eager SigTM must execute fetchExclusive
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Table 5.3: The minimum dynamic instruction counts for the eager STM and eager
SigTM barriers. R and W represent the number of words in the transaction read set
and write set, respectively.

Read Barrier Write Barrier Commit Barrier

Eager STM 32 57 51 + 15R + 6W
Eager SigTM 4 32 15

after inserting the address in the write signature and before updating the undo log and

memory. Any fetchExclusive instructions that time out because of NACKs cause

the transaction to abort (pessimistic conflict detection). During transaction abort,

the NACKs from the write signature guarantee atomic and isolated restoration of

original values from the undo log. Finally, transaction commit is very simple in eager

SigTM and just requires resetting the read signature and write signature. Table 5.3

presents the minimum dynamic overhead for STM and SigTM barriers with eager

data versioning.

Figure 5.9 illustrates two cases that can lead to unpredictable behavior on eager

STMs without strong isolation: speculative lost update and speculative dirty read [86].

In the speculative lost update example, the expected value for x is either 1 or 2, but

the shown interleaving results in an incorrect value of 0. Similarly, the speculative

dirty read results in x with the value 0 instead of 1. Both of these errors occur

because the memory accesses to x by Thread 2 break the isolation and atomicity of

the eager STM’s transaction abort. In SigTM, however, the NACKs from the write

signature guarantee that rolling back a transaction appears isolated and atomic. This

also guarantees predictable behavior for the privatization example in Figure 5.4 as

non-transactional accesses that interfere with the undo log are NACKed by the write

signature.

5.8.2 Line vs. Object Granularity Conflict Detection

Thus far, SigTM has been described with cache line granularity conflict detection,

which works well with languages like C. For object-oriented languages, however, a
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1: procedure EagerSigTMtxStart
2: checkpoint()
3: enableReadSiglookup(EXCLUSIVE)
4: enableWriteSiglookup(EXCLUSIVE | SHARED)
5: enableWriteSigNack(EXCLUSIVE | SHARED)
6: end procedure

7: procedure EagerSigTMreadBarrier(addr)
8: readSigInsert(addr)
9: return Memory[addr]

10: end procedure

11: procedure EagerSigTMwriteBarrier(addr, data)
12: writeSigInsert(addr)
13: fetchExclusive(addr)
14: writeSet.insert(addr, Memory[addr])
15: Memory[addr] ← data
16: end procedure

17: procedure EagerSigTMtxCommit
18: readSigReset()
19: disableReadSiglookup()
20: writeSigReset()
21: disableWriteSigLookup()
22: end procedure

23: procedure EagerSigTMtxAbort
24: readSigReset()
25: disableReadSiglookup()
26: for all addr in writeSet do
27: Memory[addr] ← writeSet.lookup(addr)
28: end for
29: writeSigReset()
30: disableWriteSigNack()
31: disableWriteSigLookup()
32: doContentionManagement()
33: restoreCheckpoint()
34: end procedure

Figure 5.8: Pseudocode for the basic functions in eager SigTM.
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Assume that initially x == y == 0

// Thread 1
atomic {

if (y==0)
x=1;

/* abort */
}

// Thread 2
...
x=2;
y=1;
...
...

// Thread 1
atomic {

if (y==0)
x=1;

/* abort */
}

// Thread 2
...
if (x==1)

y=1;
...
...

(a) Speculative lost update (b) Speculative dirty read

Figure 5.9: Isolation and ordering violation cases for the eager STM system.

better match would be object granularity conflict detection since object-oriented pro-

grammers reason about their program behavior in terms of objects. To accomplish

object granularity conflict detection, only two simple software changes need to be

made in SigTM. First, the object header of objects should be inserted into signatures

instead of the addresses of all the object fields. Second, the software data versioning

log must be adjusted to support object granularity.

In addition to semantic advantages, conflict detection at object granularity offers

performance benefits when compared to line granularity conflict detection. With the

former, read barriers and write barriers become less frequent as they only need to be

executed once per object instead of once per each field in that object. This leads to

smaller SigTM software overhead. Moreover, since fewer addresses are inserted in the

signatures, signature lookups that return false positives are less probable. They can

still occur because of aliasing from the signature hash functions or because of multiple

object headers occupying the same cache line, but their frequency is nevertheless

reduced.

Finally, the SigTM hardware can also support a mixed environment that uses both

line and object granularity conflict detection. Line granularity can be advantageous

for large objects like multi-dimensional arrays since only a small subset of the array

elements may be accessed at a time in each transaction. Thus, for these kinds of

objects, line granularity can help reduce the number of true conflicts. For other data

types, object granularity is advantageous for the reasons previously discussed.
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5.8.3 Broadcast Coherence vs. Directories

Up till now, the description of SigTM has assumed a broadcast protocol that makes

cache coherence messages visible to all processors in the system. The snooping coher-

ence used in current multi-core systems meets this assumption. Broadcast coherence

allows the hardware signatures to view all coherence requests—even for cache lines

that have been accessed by a transaction but subsequently replaced in the local cache.

Larger-scale multi-core systems may use directories to filter coherence traffic. To im-

plement SigTM correctly in such systems, one can use the LogTM sticky directory

states [65]. In LogTM, cache replacement does not immediately modify the directory

state. Hence, the directory will continue to forward coherence requests to a processor

even after it evicts a line from its caches.

5.9 System Issues

To be a complete approach for implementing transactional memory, SigTM needs to

handle several system issues. In this section, I will explain how SigTM handles trans-

action nesting, hardware multithreading, thread suspension and migration, virtual

memory paging, and inter-process isolation.

5.9.1 Nesting

The existing hardware in SigTM can support an unbounded number of transaction

nesting levels. Unlike HTMs and other hybrid designs [7, 31, 41, 55, 65, 79, 88], the

hardware cost for SigTM does not increase with the number of nesting levels sup-

ported. Moreover, since data versioning is implemented in software, SigTM simply

has to separate the management of the software write sets of the parent and child

transactions and then merge them appropriately. Support for transaction nesting is

important as transactions in applications are likely to call library code that may also

be parallelized with transactions.

SigTM provides conflict detection for nested transactions [61] by saving and restor-

ing signatures at transaction boundaries. To begin a nested transaction, SigTM must



88 CHAPTER 5. SIGNATURE-ACCELERATED TRANSACTIONAL MEMORY

first save the contents of the read signature and write signature. The signatures are

not reset, and the child transaction continues inserting addresses in the signatures so

that the signatures contain addresses from both the parent and child transactions. If

the signature detects a conflict, all the saved parent signatures must be checked in or-

der to determine how many nesting levels to roll back. Proceeding from the youngest

to the oldest parent nesting level, the corresponding signatures are examined and the

first one that does not result in a hit indicates the point for rolling back. When a

child transaction commits, it needs to properly merge with the parent transaction.

For closed nesting, the saved parent signatures are discarded and execution proceeds

with the current contents of the signatures. On the other hand, if an open-nested

transaction commits, the parent’s signatures are restored to indicate that the child

transaction committed independently.

5.9.2 Hardware Multithreading

For processor cores that support multiple hardware threads, SigTM requires a sep-

arate set of signatures and configuration registers per thread. Since the signatures

are maintained outside the cache, it is relatively straightforward to add this extra

hardware. However, since one hardware thread may fetch a line that is later accessed

by another hardware thread, signature lookups on misses and coherence upgrades are

no longer sufficient. Stores to lines in modified or exclusive states must also be looked

up in the signatures of other threads. Moreover, if any thread currently has its write

signature in NACK mode, load hits to lines in modified or exclusive states must also

be looked up in the write set signatures of other threads.

5.9.3 Thread Suspension and Migration

Because of interrupts or thread scheduling by the operating system, SigTM must be

able to suspend execution of a transaction. Handling interrupts in a transaction can

be a relatively expensive operation, but an efficient way to accomplish this task is the

approach used by the XTM system [29]. If the interrupt is not critical, this approach

first waits a short period of time to see if a transaction finishes executing. Since many
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transactions are relatively short, one is likely to complete in this short wait period.

However, if the interrupt is critical, the system checks to see if there are any relatively

young transactions executing. If so, that transaction is aborted as not much work

will be lost by rolling it back. By handling the interrupt in one of these two manners,

no transaction state needs to be saved or restored, which leads to lower overhead.

If neither short nor young transactions are currently executing, SigTM must sus-

pend an arbitrary transaction. To achieve this, nothing special needs to be done for

the data versioning log since it is implemented in software. However the contents of

the thread’s read signature and write signature must be saved by the operating sys-

tem. To provide conflict detection for all suspended transaction, the operating system

can use one additional pair of signatures. The combined signatures (bitwise OR) of

all the suspended read signatures and write signatures are stored in the respective

additional signature. When the additional signature detects a conflict, software pro-

cessing is required to determine which suspended thread to abort. Finally, to resume

a transaction, the operating system simply restores that transaction’s signatures and

recalculates the contents of the additional signatures for the transactions that are

still suspended. This technique of transaction suspension and resumption can also be

used to achieve the migration of a transaction between two cores.

5.9.4 Paging

Swapping virtual memory pages to and from disk poses a challenge for SigTM be-

cause physical addresses are recorded in the signatures. To properly provide conflict

detection for transactions in the presence of page remapping, two things must be

done. First, the operating system must keep track of the threads that access each

page. Then, when paging occurs, all the physical addresses from the new mapping

must be inserted into the signatures. This approach will ensure correctness as no true

conflicts are missed, but it has the disadvantage of an increased probability of false

conflicts. To reduce the probability of false conflicts, a second set of signatures can

be maintained using virtual addresses. When updating the physical signatures after
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a page swap, the virtual signatures can be used as filters that indicate which physical

addresses should be inserted from the new mapping.

5.9.5 Inter-process Isolation

Because SigTM uses physical addresses to populate its signatures and to perform

conflict detection, it is possible for memory references from different processes to

interfere with each other. For example, a malicious process running on a machine

could purposely saturate its signatures. This would cause its signatures to generate

conflicts or NACKs for all remote memory references and while it would not affect

correctness, it would prevent other processes from making forward progress.

There are several ways in which SigTM can prevent this type of denial-of-service

attack. One solution is to tag all coherence messages with an address space identifier.

SigTM would then only generate conflicts or NACKs if the remote coherence request

hits in the signature and the address space identifier matches. The second requirement

prevents false conflicts between processes. Another solution is to rely on the operating

system. Because the operating system is continuously monitoring the progress of all

threads, it can detect when a thread is repeatedly aborted or NACKed. If this

behavior occurs, the operating system can adjust its thread scheduling policies so

that two conflicting processes do run at the same time.

5.10 Related Work

In the past few years, there has been significant research activity on transactional

memory, covering topics such as implementation techniques, programming constructs,

runtime systems, and contention management. In this section, I will discuss some al-

ternative hybrid transactional memory proposals as well as related work on signature

based HTMs and strong isolation. For a thorough coverage of all aspects of transac-

tional memory research, I refer the reader to Larus and Rajwar [56].
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5.10.1 Hybrid Transactional Memory

The first hybrid TM systems were proposed to address the virtualization challenges of

HTM [31,55]. These systems combine an HTM with an STM implementation, switch-

ing from the former to the latter on context switches or when hardware resources

become exhausted. These early hybrid TMs introduce modifications to caches (for

the HTM) and require two versions of the code for every transaction. In contrast,

SigTM does not require changes to the caches, and it only requires one version of the

code.

Subsequent hybrid transactional memory schemes introduced hardware changes

to address performance bottlenecks of software transactions [79, 88]. Of these two

approaches, SigTM is closest in design to the HASTM system [79]. In HASTM,

software-controlled mark bits are added to each cache line and are used to create

filters that eliminate redundant read or write barriers and read set validations during

transaction commits. However, because cache lines that are part of the read or write

set can be replaced, HASTM cannot rely exclusively on mark bits for conflict detection

and must be able to fall back to the slower STM bookkeeping.

In contrast to HASTM, SigTM is a standalone system without a backup mode as

its signatures can encode read and write set membership even if their sizes exceed the

local cache capacity. However, because aliasing may occur in its signatures, SigTM

cannot use its signatures to eliminate redundant read or write barriers or unnecessary

read set validations during commit. SigTM must also do extra work to correctly main-

tain its signatures for events such as thread suspension and virtual memory paging.

On the other hand, HASTM can discard the contents of its filters on such events and

still correctly provide hardware acceleration of software transactions. Unfortunately,

introducing support for hardware multithreading and nested transactions in HASTM

can be expensive as it requires multiple sets of mark bits per cache line.

The other hybrid TM that adds hardware to accelerate software transactions is

RTM [88]. RTM accomplishes this by modifying the local caches to support its alert

on update (AOU) mechanism and by adding 5 states to the MESI coherence protocol

to facilitate its programmable data isolation (PDI) feature. In contrast, SigTM does
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not require cache modifications and only needs a NACK feature to be added to the

coherence protocol.

Recent hybrid transactional memory proposals have been able to provide strong

isolation for software transactions without the addition of extra barriers in non-

transactional code regions. The first of these was SigTM, which accomplishes strong

isolation through the use of signatures and the cache coherence protocol. The hy-

brid TM system by Vallejo et al. [94] is also able to solve the privatization problem

illustrated in Figure 5.4. It achieves this by combining an HTM with an STM that

provides pessimistic concurrency control (PCC) [89]. Unlike other hybrid designs that

combine HTM with STM, this implementation only requires one code path. How-

ever, the implementation only works with eager data versioning and as it does not

provide strong isolation for all scenarios with non-transactional memory references

(e.g., publication).

A very recent hybrid TM system that provides strong isolation is the User Fault-

On (UFO) system [7]. The UFO system associates two bits with each cache line

throughout the memory hierarchy to enable read and write protection modes. The

bits indicate whether the line was read or written in a transaction and are used to

generate a memory fault if an invalid non-transactional access is made to a marked

line. A disadvantage of the UFO system is that its technique for providing strong

isolation has high overhead when transaction nesting occurs as all the pages in the

read and write sets must be visited to copy the added protection bits. Moreover,

because the UFO system combines HTM with STM, it requires two versions of the

application code.

5.10.2 Signature-based HTMs

SigTM was inspired by the Bulk HTM, which was the first TM system that used

signatures for conflict detection [23]. As an HTM, the Bulk design requires additional

hardware to implement lazy data versioning in caches and thus must deal with cache

capacity limitations. In contrast, SigTM implements data versioning in software and
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requires no hardware support beyond the read set and write set signatures. LogTM-

SE is similar to Bulk but implements eager data versioning [98]. It requires additional

hardware to implement the undo log, including an array of recently logged cache lines.

5.10.3 Strong Isolation

Several researchers have observed that strong isolation is necessary for predictable be-

havior in TM systems [13,56,86]. In particular, Shpeisman et al. [86] have categorized

the problematic cases for both eager and lazy TM systems that do not provide strong

isolation. They also presented a compiler methodology, including optimizations, that

use additional barriers in non-transactional code in order to provide strong isolation

guarantees. In [13], Blundell et al. claim that there are cases in which strong isolation

leads to unexpected results. However, they are simply observing that transactions

can replace lock-based synchronization in some cases (atomicity) but not in others

(coordination).
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Chapter 6

Evaluating Signature-accelerated

Transactional Memory

In designing SigTM, my goal was to create a hybrid TM system that combined the

advantages of HTMs and STMs. In the previous chapter, I qualitatively described

how SigTM is a design that has high-performance, flexibility, cost-effectiveness, and

strong isolation. Of these four characteristics, two can be verified quantitatively: high-

performance and cost-effectiveness. In this chapter, I use STAMP to quantitatively

analyze these two aspects of the SigTM design.

6.1 Methodology

To evaluate SigTM, I used the same simulator-based approach described in Sec-

tion 4.1. Table 6.1 summarizes all the parameters of the simulated system. As

before, the processor model assumes an IPC of 1 for all instructions that do not

access memory, but all memory hierarchy timings are modeled.

The only hardware difference from before is the addition of signature registers

to each core. The signature hash functions are described in Table 6.1 and each can

set/lookup any of the bits in the signature register (i.e., “true Bloom signatures” as

named by [82]). Detailed analyses of hash functions suitable for hardware signatures

95
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Table 6.1: Configuration for the simulated multi-core system with SigTM support.

Feature Description

Processors 1 to 32 x86 cores, in-order, single-issue

L1 Cache 64KB, private, 4-way associativity, 32B line, 1-cycle access
Provides TM bookkeeping for HTM systems

Network 32B bus, split transactions, pipelined, MESI

L2 cache 8MB, shared, 32-way associativity, 32B line, 12-cycle access

Memory 100-cycle off-chip access

Signatures 32 to 2048 bits per signature register

SigTM Hash Functions (1) unpermuted cache line address
(2) cache line address permuted as in [23] (details below)
(3) address from (2) shifted right by 10 bits
(4) permutation of cache line address (details below)

Bit permutations used in hash functions (bit indices, LSB is 0):
(2): [0-6, 9, 11, 17, 7-8, 10, 12, 13, 15-16, 18-20, 14]
(4): [25-24, 22-21, 18-17, 13-11, 1-0, 20, 10 16, 19, 2, 6, 4, 23, 7-8, 5, 26, 9, 15-14, 3]

can be found in [22,23,74,81], and the selection of the hash functions used in SigTM

was based on these previous works.

For the experiments in this chapter, four TM system designs were implemented

on top of the simulator:

• Lazy STM: An x86 port of the TL2 software TM system [32] that is described

in Section 2.5.1. It performs lazy versioning using a software write buffer. To

provide conflict detection, it uses locks for data in the write set during commit.

Conflicts for data in the read set are detected by checking version numbers

periodically, and after a transaction aborts three times, the lazy STM uses

a randomized linear backoff mechanism. Finally, it detects conflicts at word-

granularity and provides weak isolation of transactions.

• Eager STM: An eager version of TL2 as described in Section 2.5.2. Similar

to the McRT STM [80], it uses an undo log and holds locks on data in the
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write set throughout the transaction to provide versioning. Conflict detection is

similar to the lazy STM system, and its conflict management, conflict detection

granularity, and weak isolation policies are the same.

• Lazy SigTM: A hybrid version of the lazy STM that follows the SigTM sys-

tem [17] as described in Section 5.5. It uses hardware signatures to track the

read and write set and to implement fast conflict detection. Data versioning

is still in software, and the lazy STM’s contention management policy (ran-

domized linear backoff) is used. Finally, conflict detection is performed at line

granularity and strong isolation of transactions is provided.

• Eager SigTM: The eager equivalent of the lazy SigTM as described in Sec-

tion 5.8.1. Conflict detection utilizes the hardware signatures but the software

for data versioning uses an undo log. Eager SigTM uses the same contention

management policy as lazy SigTM (and the lazy and eager STMs) and provides

line granularity conflict detection and strong isolation of transactions.

To evaluate the two SigTM designs, I used the STAMP benchmark suite to analyze

SigTM’s performance and to quantify SigTM’s hardware cost. Since I used a simulator

for the analysis, only twenty STAMP input data sets and configurations (the variants

without the ‘++’ suffix) were used.

6.2 Performance Analysis

The goal of SigTM was to accelerate software transactions by adding a small amount

of simple hardware to reduce the software overhead described in 5.1. To evaluate how

well SigTM achieves this goal, I compared the performance of four TM systems. The

performance of lazy SigTM was compared to that of lazy STM, and a similar compar-

ison was made between eager SigTM and eager STM. No direct comparisons between

lazy and eager TM systems were made because the purpose of the experiments to see

how effective SigTM accelerates software transactions and not to determine the best

overall design for a TM system. Figures 6.1 and 6.2 present the speedups of the two
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lazy TM systems and two eager TM systems, respectively. The number of cores is

scaled from 1 to 32, and higher speedups are better. For these experiments, SigTM

uses 2 Kbits per read and per write signature.

To provide further insight into performance issues, Figures 6.3 and 6.4 show the

execution time breakdown for the runs with 16 processors on the lazy TM systems

and eager TM systems, respectively. Execution time is broken into “busy” (useful

instructions and cache misses), “conflict” (time spent on aborted transactions), and

“imbalance” (workload imbalances). To show the overhead of software transactions,

I separate time spent on read and write barriers and commit from busy time. Miscel-

laneous barriers, like those starting a software transaction, are accounted for in the

“other” segment. Lower execution times are better.

Figures 6.1 and 6.2 show that in general, SigTM scales similar to STM but that

SigTM’s relative performance is often much better. On average, at 32 cores, lazy

SigTM is 2.05× faster than lazy STM and eager SigTM is 1.45× faster than eager

STM. Applications that match this average behavior are genome, kmeans-low, and

vacation. The explanation for eager SigTM’s smaller performance improvement is

relatively straightforward. In comparison to the lazy STM, the eager STM’s read,

write, and commit barriers have much smaller overhead (compare Table 5.2 and

Table 5.3). Thus, when accelerating lazy STM, SigTM has more opportunities for

improving performance than when accelerating eager STM. For both lazy and eager

SigTM, however, Figures 6.3 and 6.4 show that SigTM is effective in reducing the

overhead of read, write, and commit barriers.

The one application where STM outperforms SigTM is bayes. In this application,

several threads concurrently modify a global array that has multiple elements per

cache line. As explained in Section 5.6, SigTM cannot perform conflict detection at

finer granularity than cache lines. In comparison, the STMs detect conflicts at word-

granularity. Thus, in bayes the modifications of the global array cause transactions in

SigTM to abort more than in STM, and Figures 6.3 and 6.4 confirm that SigTM loses

more performance to violations than STM. This false-sharing behavior also appears

in vacation. However, for this application, SigTM’s acceleration of the large number

of read barriers outweighs the performance loss from coarser-grain conflict detection.
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Figure 6.1: STAMP speedups over sequential code on lazy SigTM and lazy STM.
Application variants that use the larger data set are indicated by a ‘+’ appended to
the application name. The suffixes -low and -high indicate variants with low and with
high contention, respectively.
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Figure 6.3: The execution time breakdown for 16-processor runs on lazy SigTM
and lazy STM. Execution time is normalized to that of the sequential code without
transaction markers or read/write barriers.
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Figure 6.4: The execution time breakdown for 16-processor runs on eager SigTM
and eager STM. Execution time is normalized to that of the sequential code without
transaction markers or read/write barriers.
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Of the STAMP applications, the two that exhibit the largest performance differ-

ence between SigTM and STM are intruder and kmeans-high. SigTM is able to

achieve a performance improvement of almost 6× for intruder and almost 4× for

kmeans-high. Among the STAMP applications, these two have relatively large num-

bers of read and write barriers with respect to the lengths of their transactions. Con-

sequently, when SigTM reduces the overhead of read and write barriers, the lengths

of transactions in these two application becomes much shorter. This reduces the

amount of useful work that can be potentially lost to violations and also reduces the

time duration where a transaction is vulnerable to a violation. Thus, SigTM is able

to perform much better than STM on these two applications, and Figures 6.3 and 6.4

confirm that SigTM spends much less time in violation.

There are also two STAMP applications that do not have a large performance

difference between SigTM and STM. In labyrinth, transactions are very long, which

means that the overhead of read, write, and commit barriers is easily amortized.

ssca2 also does not have much overhead from software transactions as it has very

few read and write barriers. Since the difference between SigTM and STM is in the

overhead of these barriers, applications where these are not the main bottleneck will

have very similar performance between SigTM and STM.

Finally, some of the STAMP benchmarks demonstrate performance differences

between lazy and eager variants of SigTM. The most notable of these is genome. As

with the eager STM and HTM, the pessimistic conflict detection scheme used by eager

SigTM is disadvantageous for this workload because it does not guarantee forward

progress. Thus, with more than 8 cores, eager SigTM no longer scales because the

higher rates of conflicts cause livelock. In contrast, lazy SigTM continues to scale as

optimistic conflict detection guarantees forward progress.

The other applications where eager SigTM performs differently than its lazy vari-

ant are: kmeans, vacation, and yada. In these three benchmarks, the performance

difference between eager SigTM and eager STM is much smaller than that between

lazy SigTM and lazy STM. Because eager STM’s barrier overhead is smaller than

that of lazy STM, the SigTM hardware provides less acceleration in the eager variant

than in the lazy one. This effect is not seen in all the STAMP applications, as some
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other factors (e.g., high contention, livelock, etc.) may be the dominating factor in

overall performance.

6.3 Hardware Cost Analysis

The SigTM results in Section 6.2 assume long read set and write set signatures

(2 Kbits per signature) that eliminate virtually all false conflicts due to aliasing

from the signature hash functions. Figures 6.5, 6.6, 6.7, and 6.8 present the normal-

ized performance of SigTM with 16 processors as I vary the read and write signature

lengths from 2 Kbits down to 32 bits. Higher performance is better, and an operating

point with both high performance and a short signature length is desired. The same

set of hash functions is used in all experiments (see Table 6.1).

6.3.1 Read Signature Cost Analysis

The graphs in Figures 6.5 and 6.6 show that SigTM’s performance is highly sensitive

to the read signature length. Between the lazy and eager variant of SigTM, the

performance with varying read signature lengths is similar because the read signature

is used the same way in both variants; coherence requests are looked up in the read

signatures throughout the entire duration of a transaction in both systems. Varying

the read signature length, however, does show that the resulting behavior of the

STAMP applications divides them into two groups: a group that is relatively sensitive

to read signature length and a second group that is relatively insensitive.

In the first group are bayes, genome, intruder, vacation, and yada. The per-

formances of these applications all drop significantly with read signature lengths of

less than 2 Kbits and at 32 bits, all perform at less than 20% of that with 2 Kbits.

yada has the largest performance hit among the four applications, and at 1024 bits,

it drops to 40% of its performance. All of these applications have moderate to long

transactions and medium to large numbers of read barriers, which result in a high

sensitivity to read signature length. First, long transactions make aborts very costly

in terms of performance. Since reducing the signature length increases false positives
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Figure 6.5: The effect of read signature length on lazy SigTM performance (16 pro-
cessor runs). Note that bit count, and therefore accuracy, decreases from left to right.
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Figure 6.6: The effect of read signature length on eager SigTM performance (16 pro-
cessor runs). Note that bit count, and therefore accuracy, decreases from left to right.
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Figure 6.7: The effect of write signature length on lazy SigTM performance (16 pro-
cessor runs). Note that bit count, and therefore accuracy, decreases from left to right.
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Figure 6.8: The effect of write signature length on eager SigTM performance (16 pro-
cessor runs). Note that bit count, and therefore accuracy, decreases from left to right.
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and hence the total number of aborts, these five applications quickly succumb to per-

formance degradation from shorter signatures. Second, frequent read barriers make

it more likely for false conflicts to occur as they cause more bits in the signature to

be set. This is especially true for vacation and yada as their large numbers of read

barriers per transaction (from 256 to 608), mean that a 1024 bit Bloom filter can

have up to a 70% chance of false positives [82].

It is important to note that depending on the hash functions used and the memory

access patterns exhibited, large numbers of read barriers do not necessarily lead to

more false conflicts. This behavior is seen in labyrinth, as each read barrier accesses

a unique cache line (see Section 3.4.5). Since one of the signature hash functions is the

unpermuted cache line address, false conflicts will only start occurring in labyrinth

for read signature lengths close to to the numbers of read barriers per transaction in

labyrinth (35 to 46 read barriers). Thus, this benchmark is able to perform well

even with short signatures of 32 bits.

Finally, there is a second group of benchmarks whose performance is relatively

insensitive to read signature length: kmeans, labyrinth, and ssca2. These applica-

tions have relatively few read barriers per transaction, which makes them less prone

to false conflicts caused by reduced signature lengths. Moreover, kmeans and ssca2

also have relatively short transaction lengths, which means that transaction aborts

are relatively less expensive. The exception to this is labyrinth, which has very long

transactions, but still performs well with short signatures (for the reasons discussed

earlier). Because of these factors, at 512 bits, these applications still perform within

95% of their original performance with 2 Kbits, and all but kmeans-high are within

80% at 32 bits.

6.3.2 Write Signature Cost Analysis

Figure 6.7 shows that, with the exception of yada, none of the STAMP applications

exhibit particular sensitivity to the write signature length in lazy SigTM. With 128 bit

signatures, all workloads but yada still perform within 90% of their original perfor-

mance with 2 Kbit signatures on lazy SigTM. Of the STAMP applications, yada has
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the highest number of write barriers per transaction (108 write barriers) by an or-

der of magnitude. Thus, with any read signature length less than 1 Kbits, the large

number of write barriers in yada make it succumb to false conflicts.

Performance on lazy SigTM is relatively insensitive to write signature length be-

cause of two reasons. First, these applications have low numbers of write barriers

per transaction; thus, their write sets can be accurately represented even with short

signatures. Second, because of lazy versioning, write signatures detect conflicts only

during the commit stage to guarantee write isolation as the write set is copied to

memory. Since the commit stage is short, the write signature accuracy is less critical

than that of the read signature, which is used for coherence lookups throughout the

entire duration of the transaction.

On the other hand, Figure 6.8 indicates that the performance of SigTM with eager

versioning is more sensitive to the write signature length. This is because eager SigTM

enables coherence lookups in the write signature throughout the transaction execution

and not only during transaction commit like lazy SigTM. Consequently most of the

applications on eager SigTM need a longer write signature length of 512 bits in order

to maintain performance within 95% of that with 2 Kbit write signatures. Two of

the applications, genome and yada actually require an even longer write signature

length of 1024 bits to maintain 75% performance. genome is very prone to livelock

(see Section 4.3.2), and the additional false conflicts caused by write signature lengths

shorter than 2 Kbits exacerbate this. Finally, in the case of yada, the application’s

larger number of write barriers make it more susceptible to false conflicts from shorter

write signatures.

6.3.3 Cost Sensitivity to Number of Cores

It is important to determine if the number of cores affects the signature cost analy-

sis presented earlier. To test this, I selected three of the STAMP applications that

were representative of different sensitivities to signature length: labyrinth (low sen-

sitivity), genome (medium sensitivity), and yada (high sensitivity). By varying the
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Figure 6.9: The effect of read signature length on lazy SigTM scalability.
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Figure 6.10: The effect of read signature length on eager SigTM scalability.

number of cores from 1 to 32, the speedup relative to sequential code without soft-

ware transaction overhead was measured for signature sizes of 512, 1024, and 2048

bits. Figures 6.9 and 6.10 show how the read signature length affects scalability on

lazy and eager SigTM, respectively. The corresponding data for write signatures are

shown in Figures 6.11 and 6.12.

As expected, the higher the sensitivity to signature length, the more scalability

suffers as read signature length is reduced. For applications with high sensitivity

(vacation and yada), any read signatures shorter than 2 Kbits fail to scale to 32 cores.

In fact, reducing the signature length by a factor of two results in a performance
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Figure 6.11: The effect of write signature length on lazy SigTM scalability.
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Figure 6.12: The effect of write signature length on eager SigTM scalability.

degradation of 3× at 32 cores. The medium sensitivity category consists of bayes,

genome, and intruder, and these applications still scale with 1 Kbit read signatures

(though they fail to scale with 512 bits). Note that as discussed before, genome on

eager SigTM suffers from livelock, which explains why none of the three curves for

genome scale in Figure 6.10. Finally, the low sensitivity group (kmeans, labyrinth,

and ssca2) still scale well when the read signature length is reduced.

The general results for the varying write signature lengths are the same as for the

varying read signature lengths with the exception of yada. Figures 6.11 and 6.12 show

that between 1 Kbit and 2 Kbit write signatures, yada has a performance difference
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of less than 20%, whereas for the read signatures there was a difference of 3×.. Note

that even with 512 bit write signatures, yada is able to scale to 32 cores (though

its absolute performance is about 2× worse than that with 1 Kbit or 2 Kbit write

signatures). Overall, across the STAMP applications there is greater variance among

read set sizes than among write set sizes, which leads read signature lengths to have

a greater impact on scalability than write signature lengths.

6.3.4 Cost Analysis Summary

Given the applications and system sizes I studied, my recommendation is 1 Kbit read

signatures and 128 bit write signatures for lazy SigTM and 1 Kbit read signatures

and 512 bit write signatures for eager SigTM. Hence, the per hardware thread cost of

SigTM is 1152 bits and 1526 bits of storage for lazy and data versioning, respectively,

plus the logic for the hash functions.

Compared to previous work, my results differ slightly. Using a set of Java work-

loads, the Bulk HTM recommended read and write signatures of 2 Kbits each [23].

Based on the STAMP workloads, SigTM’s recommended read and write signature

lengths are shorter than those for Bulk (especially the write signature length). In

contrast, LogTM-SE suggests that for workloads similar to SPLASH-2 [97], short sig-

natures of 64 bits may be sufficient [98]. Since the STAMP applications spend more

time in transactions and generate larger read and write sets than the SPLASH-2

benchmarks, it is likely that signature-based TM systems will need longer signatures

for workloads like STAMP. This observation was confirmed in [81] for two of the

STAMP applications on LogTM-SE.

Further experiments are necessary to determine if such signatures are sufficient

for other applications and larger-scale systems. For workloads like yada, performance

degrades significantly with shorter signatures on 32 cores. Fortunately, large scale

systems are likely to use a directory instead of broadcast coherence. Using a directory

filters bus traffic, which also makes it less likely for the false positives from shorter

signatures to occur.
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The choice of hash functions can also play a significant role in the signature

accuracy. Detailed analyses of hash functions suitable for hardware signatures can

be found in [22, 23, 74, 81]. In [82], Sanchez et al. also present an efficient hardware

implementation of signatures as well as realistic area estimates based on commercial

processors. They conclude that with parallel Bloom signatures of 4 Kbits and four

hash functions, the AMD Barcelona processor [99] would have a core size increase of

0.25% and a die size increase of 0.10%. The corresponding data for the Sun Niagara

processor [52] are 4.1% for the core and 1.1% for the die. Since SigTM has shorter

signatures, its area overhead will be even smaller than these estimates.
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Conclusions

In this dissertation, I presented a workload-based design of an effective hybrid trans-

actional memory system. First, I introduced the Stanford Transactional Applications

for Multi-Processing (STAMP) to address the shortcomings of previous approaches

used to evaluate TM systems. With STAMP, I analyzed different HTM and STM

proposals to guide the design of Signature-Accelerated TM (SigTM), my new hybrid

transactional memory design that combines the advantages of HTM with those of

STM. In this chapter, I will summarize both STAMP and SigTM and comment on

some possible future work for each.

7.1 Stanford Transactional Applications

for Multi-Processing

In creating STAMP, I sought to create the first benchmark suite for TM that ade-

quately addressed breadth in application domains, depth in stressing a wide range of

transactional execution cases, and portability across a wide range of TM systems. To

demonstrate these properties, I ran 20 variants of the eight STAMP applications on

six different TM systems: eager and lazy variants of HTM, STM, and hybrid TM. All

the measured transactional characteristics ranged at least two orders of magnitude,

115
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and although the TM systems’ relative performance was oftentimes the expected be-

havior, STAMP helped identify cases that contradict conventional wisdom and require

further research.

The source code for the STAMP applications and the lazy and eager STMs is

freely available to the public from http://stamp.stanford.edu. My hope is that

STAMP will help address a great need in the TM research community by providing

a comprehensive tool for helping people design and evaluate TM systems. Already

there are many early adopters of STAMP in both industry and academia [14, 25, 35,

45,53,82,92].

In its current form, STAMP is a very useful tool for analyzing TM systems, but

in the future, more benchmarks could be added to cover even more transactional

scenarios. For example, a workload exhibiting frequent privatization and publication

of objects could be added to test how well TM systems support strong isolation.

Another possibly interesting case to target would be an application that exhibits

various phases during its execution. For example, the workload could start off with

long transactions with large read sets and low contention, move to short transactions

with small write sets and high contention, and then end with long transactions with

large write sets and low contention. Phased behavior such as this would help analyze

how well TM systems can adapt to dynamic program behavior.

7.2 Signature-Accelerated Transactional Memory

The design goal of SigTM was to combine the performance characteristics and strong

isolation guarantees of hardware TM techniques with the low cost and flexibility of

software TM systems. To create the SigTM design, I first used STAMP to identify and

analyze the bottlenecks of STM proposals. Based on these results, I designed SigTM

to use hardware signatures to track the read set and write set for pending transactions,

but implemented data versioning and all other transactional functionality in software.

Unlike previous hybrid designs, SigTM requires no modifications to the hardware

caches in a multi-core system, which reduces hardware cost and simplifies support

for features such as nested transactions and multithreaded cores. SigTM is also the
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first hybrid TM system that transparently provides strong isolation guarantees that

lead to predictable interactions between transactional blocks and non-transactional

accesses.

Using the STAMP applications, I compared SigTM to STM systems. I showed

that SigTM outperforms software-only transactions by 50% to 100% on average and

can perform up to 6× faster on some applications. I also demonstrated that for

lazy SigTM, 1 Kbit read signatures and 128 bit write signatures are sufficient for

eliminating most false conflicts due to the inexact nature of signature-based conflict

detection. Eager SigTM requires a slightly longer write signature of 512 bits. Finally,

for large scale systems, directories may be useful for reducing the number of false

positives from short signatures.

Future work for SigTM can be grouped into two categories. First, enhancements

to the SigTM design can be made to provide even greater acceleration of software

transactions, thus reducing the performance gap between SigTM and HTM. For ex-

ample, more hardware can be added to SigTM to implement a technique similar to

HASTM’s mark bits [79]. This would allow SigTM to eliminate the overhead of dy-

namically redundant read and write barriers. Another hardware improvement could

be to dynamically change the signature hash functions depending on the exhibited

application behavior. For example, a large number of aborts could trigger an adjust-

ment of hash functions in hopes of remedying a pathological memory access pattern.

The second area of future work for SigTM is to realize the design in an actual proces-

sor. For an industry looking to combine the advantages of HTM and STM, SigTM

presents a promising solution.
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