
Brief Announcement: Towards Soft Optimization
Techniques for Parallel Cognitive Applications

Woongki Baek, JaeWoong Chung, Chi Cao Minh, Christos Kozyrakis, and Kunle Olukotun
Computer Systems Laboratory

Stanford University
{wkbaek, jwchung, caominh, kozyraki, kunle}@stanford.edu

Categories and Subject Descriptors: D.1.3 [Programming Tech-
niques]: Concurrent Programming – parallel programming

General Terms: Performance, Algorithms

Keywords: Optimization, Cognitive Applications, Parallel Pro-
gramming, Parallel Algorithms

1. INTRODUCTION
The world’s data is growing at exponential rates. To deal with

this glut of information, computer systems must be able to under-
stand and interpret data in ways that provide their users with prac-
tical knowledge [1]. To process ever increasing data sets, often,
within real-time constraints, cognitive applications are stressing the
performance, memory bandwidth, and storage capabilities of mod-
ern computers. Uniprocessor systems cannot meet the performance
requirements even for relatively small data sets [3]. Parallel com-
puters such as multi-core systems or larger-scale shared memory
multiprocessors can provide the scalable performance necessary. In
theory, cognitive tasks should map well on parallel systems as each
node can process a subset of the input data or operate on a por-
tion of the current state of knowledge. In practice, however, there
are many issues that can lead to sub-optimal scalability for cogni-
tive applications on parallel systems. Such tasks use irregular data
structures such as sparse arrays and graphs which frequently lead
to work imbalance, synchronization overheads, excessive commu-
nication across nodes, and poor cache locality on parallel systems.

This paper suggests soft optimization techniques for cognitive
applications running on shared memory multiprocessors. Our goal
is to eliminate execution inefficiencies and discover additional op-
portunities for higher performance. Our motivation is that cognitive
applications exhibit soft computing properties [6]. Conventional
applications, such as on-line transaction processing, operate on pre-
cise data and have strict accuracy requirements. On the other hand,
cognitive applications are processing inherently noisy inputs, must
handle uncertainty, and eventually produce an acceptable approx-
imation of the “correct” answer. Hence, we may be able to skip
large amount of computation and communication among concur-
rent threads in order to improve performance without necessarily
degrading the quality of the output significantly.

We suggest the following soft properties as the most promising
for performance optimizations: user-defined correctness, redun-
dancy in computation and communication patterns, and inherent
adaptivity to errors [6, 4]. Based on these properties, we propose
four types of of general optimization techniques that target com-
mon bottlenecks in parallel systems. Specifically, they reduce the

Copyright is held by the author/owner(s).
SPAA’07, June 9–11, 2007, San Diego, California, USA.
ACM 978-1-59593-667-7/07/0006.

per-thread workload, mitigate work imbalance, reduce inter-thread
communication, or decrease synchronization overhead. In this pa-
per, we review the optimization techniques and summarize the ma-
jor performance correctness tradeoffs. As a convincing case study,
we evaluate loopy belief propagation (LBP) [5] on an aggressive
parallel system. We demonstrate that that soft optimizations lead
to large performance improvements on an aggressive parallel sys-
tem (3.7×) without significantly impacting application accuracy.

We believe that soft computing optimizations can be a valuable
resource for algorithm and application developers and should be
the target for parallel programming model and system designers.

2. SOFT OPTIMIZATIONS
Focusing on soft properties such as user-defined correctness, re-

dundancy in computation and communication patterns, and inher-
ent adaptivity to errors, we suggest the following four sets of soft
optimizations:

O1) Reducing computation: The first set of optimizations ex-
ploit various types of redundancies in order to reduce the work per
thread without significantly reducing the output accuracy.

Data dropping: Cognitive tasks receive superfluous incoming
data but only a small portion of data carries critical or actually new
information that is usually critical for accuracy.

Lazy computation: As a graph-based task converges, each node
is allowed to decide independently whether it should continue to
compute lazily or not based on its or its neighbor’s convergence.

Solution pruning: Aggressively pruning solutions with low fit-
ness that are unlikely to be the optimal one can significantly reduce
work per thread.

O2) Mitigating imbalance: There are two major sources of im-
balance in parallel programs. Workload imbalance occurs when
we unevenly distribute work across threads. Region imbalance oc-
curs when threads with further work are idling on a synchronization
point (e.g., barrier), waiting for slower threads to catch up. To deal
with these imbalances, we suggest the following optimizations:

Adaptive workload discarding: To deal with workload imbal-
ance, we can make busy threads reduce their computation more
aggressively than idling threads.

Selective barriers: To reduce region imbalance, we can allow
threads to selectively skip some barriers. Skipping barriers in iter-
ative algorithms may cause some threads to use slightly out of date
versions of their inputs as they run ahead of other threads. How-
ever, if threads are synchronized at some reasonable frequency, the
iterative nature of these algorithms allows threads to eventually op-
erate on the newer inputs.

O3) Reducing communication: Frequent communication be-
tween threads can be very expensive, especially for large-scale par-
allel systems. We suggest the following technique to reduce com-
munication overheads:



Adaptive communication: In graph-based tasks, each graph node
communicates messages to its neighbors for convergence. In por-
tions of the graph that reach convergence early, additional messages
are redundant and should be dropped.

O4) Reducing synchronization: Synchronization primitives such
as locks are necessary for correctness but can lead to significant
performance losses as they block threads from operating in par-
allel. As cognitive applications have relaxed correctness require-
ments and can adapt to errors, we can reduce synchronization fre-
quency using the following techniques:

Imprecise updates: In cognitive tasks, it is common to scan and
test all the variables and update a global active working set for the
next iteration. Since the number and distribution of those variables
are not known in advance, static distribution or privatization may
not be possible and synchronization primitives are used heavily in
many cases. By applying imprecise updates for non-critical codes
for accuracy, we can eliminate synchronization and significantly
enhance the performance.

Removing synchronization: For cases where conflicts between
threads are expected to be rare, we can remove synchronization
primitives completely. In the rare case that a conflict occurs, it
may cause a localized error in the application state which will be
corrected over time through the iterative process.

3. CASE STUDY: LOOPY BELIEF
PROPAGATION

To understand the impact of soft optimizations on application
performance and correctness, we developed the following optimized
versions of the parallel code for LBP, an iterative cognitive ap-
plication that calculates and propagates beliefs on an unstructured
graph [5].

Adaptive message version 1 (MSG1): This version reduces
both communication and computation (O1 and O3). When both
a sender and a receiver have converged, the sender does not calcu-
late or send new belief messages. This technique may also mitigate
imbalances because threads assigned more nodes can often drop
more workloads than threads with less nodes (O2).

Adaptive message version 2 (MSG2): This version reduces
both communication and computation as well (O1 and O3). When
only a sender has converged, it does not create and send messages
with new beliefs to its neighbors regardless of the state of each
neighbor. By skipping messages more aggressively compared to
version 1, we can expect further performance improvements. By
the same reasoning with version 1, this technique would also miti-
gate imbalances (O2).

Lazy belief computation (LazyBC): This version focuses on
computation reduction only (O1). A node goes into a lazy mode
when the difference in beliefs from the previous and current itera-
tions is within a certain threshold. Once in lazy mode, a node does
not calculate new beliefs. It goes back to busy mode only when a
new message arrives.

We evaluate the optimized versions of LBP on an simulated, ag-
gressive, shared memory multiprocessor with hardware support for
transactional memory (HTM) [2]. In Figure 1, we have shown the
normalized execution time on 32 processors. Execution time is nor-
malized to that of the base sequential code (time 1.0). Each bar
is broken down into time executing useful operations, time spent
for servicing cache misses, synchronization time due to imbalance,
communication time (commit), and time spent on atomic blocks
(transactions) that are rolled back (or violated). The base version
suffers from workload imbalance due to the uneven graph parti-
tioning. By applying the MSG1 and MSG2 techniques, useful and
synchronization time are significantly reduced. This is primarily

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Base MSG1 MSG2 LazyBC M2+Lazy

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

-0.05

0

0.05

0.1

0.15

0.2

0.25

A
cc

ur
ac

y 
Lo

ss
 (A

M
C

R
(%

))

Useful Cache Miss Synchronization Commit Violation AMCR

Figure 1: Normalized execution time and additional misclas-
sification rate (AMCR) of base and optimized versions of LBP
on 32 processors.

due to the fact that threads assigned with more nodes will have
more opportunities to drop more messages. MSG2 shows better
performance as it drops messages more aggressively compared to
MSG1. LazyBC also reduces the useful computation. Compared
to MSG2, LazyBC performs worse because it considers all neigh-
bors of a node before it eliminates some work, while the adaptive
messaging technique does finer grain elimination. The right-most
bar represents a combined optimization (MSG2 and LazyBC). As
expected, this version provides the best possible performance with
an overall speedup of 56.1 on 32 processors (3.7× over a speedup
of 15.3 of the base version.). We have also empirically verified that
the soft optimizations lead to higher performance gains on larger
scale parallel systems (e.g., 64 processors).

In Figure 1, we also present the additional miss classification rate
(AMCR) of each LBP version. We use AMCR as a metric of accu-
racy for LBP. Qualitatively, AMCR indicates how many additional
misclassifications have occurred by applying our optimizations on
the classification model compared to the base version of the algo-
rithm. Numerically, AMCR is defined as

AMCR =
Nmisses −Nbase misses

Ntotal classifications

Throughout all the versions, accuracy loss is within 0.2%, which
indicates the outstanding tolerance of LBP to soft optimizations.
Dropping a large percentage of redundant belief calculation and
messages is not critical for accuracy but leads to large performance
gains. It is interesting to note that MSG1 produced higher accuracy
than the original code. Probabilistic nature of cognitive applica-
tions sometimes allows soft optimization techniques to deliver both
better performance and higher accuracy. The benefits presented
above are robust across multiple data sets. We have omitted the
detailed results due to space limitations.

4. REFERENCES
[1] S. Cass. Winner: a fountain of knowledge. IEEE Spectr., 41(1):68–75, 2004.
[2] H. Chafi et al. A scalable, non-blocking approach to transactional memory. In

13th International Symposium on High Performance Computer Architecture
(HPCA). Feb 2007.

[3] P. Dubey. Recognition, mining and synthesis moves computers to the era of tera.
Technology@Intel Magazine, pages 1–10, February 2005.

[4] X. Li and D. Yeung. Exploiting soft computing for increased fault tolerance. In
Proceedings of Workshop on Architectural Support for Gigascale Integration,
June 2006.

[5] K. Murphy et al. Loopy belief propagation for approximate inference: An
empirical study. In Proceedings of the 15th Annual Conference on Uncertainty in
Artificial Intelligence (UAI-99), pages 467–47, San Francisco, CA, 1999.
Morgan Kaufmann.

[6] L. A. Zadeh. Fuzzy logic, neural networks, and soft computing. Commun. ACM,
37(3):77–84, 1994.


