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Register Pointer Architecture (RPA)

Indirection

Performance ↑↑↑↑,
without Power and Code Size ↑↑↑↑

Capture More Locality
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Embedded Computing

with

30 frame/sec voice
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Inefficient Microprocessor

MOPS/mW

Microprocessor 0.13

DSP 7

ASIC 200

1000x

[Broderson, ISSCC 2002]
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How to close the gap?

• Efficient Embedded Computing (EEC)
• http://cva.stanford.edu/projects/eec

• Large portion of energy spent on data 
supply
• 45% energy go to cache [Segars, ISSCC 2001]

• This work’s focus:

Energy efficient data supply
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Memory Hierarchy

Register

Cache

Main Memory

Fast, Close

Less Energy
Inflexible
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Example: FIR (1)

for (i = 0; i < NUM_IN - 3; i++) {

acc = 0;

for (j = 0; j < 3; j++) {

acc += coeff[j]*in[i + j];

}

out[j] = acc;

}
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Unrolling
Without unrolling

for (i = 0; i < NUM_IN - 3; i++) {

acc = 0;

for (j = 0; j < 3; j++) {

acc += coeff[j]*in[i + j];

}

out[j] = acc;

}

• 6 loads per input

Inner-loop unrolling

coeff0 = coeff[0]; coeff1 = coeff[1];

coeff2 = coeff[2];

for (i = 0; i < NUM_IN - 3; i++) {

acc = coeff0*in[i];

acc += coeff1*in[i+1];

acc += coeff2*in[i+2];

out[i] = acc;

}

• coeff0~2: allocated in registers

• 3 loads per input

• code size: O(# of taps)
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Full Unrolling
in0 = in[0]; in1 = in[1];

for (i = 0; i < NUM_IN - 3; i +=3 ) {

in2 = in[i + 2];

acc = coeff0*in0;

acc += coeff1*in1;

acc += coeff2*in2;

out[i] = acc;

in0 = in[i + 3];

acc = coeff0*in1;

acc += coeff1*in2;

acc += coeff2*in0;

out[i+1] = acc;

in1 = in[i + 4];

acc = coeff0*in2;

acc += coeff1*in0;

acc += coeff2*in1;

out[i + 2] = acc;

}

• 1 load per input

• code size: O((# of taps)2)
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Problems of Unrolling

• Code size

• 35 taps FIR with ARM ISA

• Inner loop unroll: 14 instruction ���� 75 
instructions (5.4x)

• Fully unroll: 14 instructions ���� 1229 
instructions (88x)
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Our Approach

Indirection

Capture More Locality

Unrolling
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Register Pointer Architecture (RPA)
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FIR with RPA (2)
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Experiment Setup

• Configuration

• Applications

• ARM ISA, SimpleScalar, Panalyzer

Unrollable?
No Yes

vs vs
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Execution Time

0.68

replaces memory accesses with register 
accesses
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Energy

0.70

fewer cache accesses compensate larger 
register file’s energy consumption
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Execution Time: RPA vs. Unrolling

0.61

0.41

Avg. 0.89
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Comparison with Unrolling

0.61

0.41
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Total Code Size

3.7

1.09

1.52
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Summary of Comparison

Better

Better

Better
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Conclusion

Indirection (RPA) Unrolling

30% Performance ↑↑↑↑,
without Power and Code Size ↑↑↑↑

Capture More Locality


