
Register Pointer 
Architecture for

Efficient Embedded 
Processors

JongSoo Park, Sung-Boem Park,

James Balfour, David Black-Schaffer,

Christos Kozyrakis, William Dally

Stanford University



2Jongsoo Park, Stanford University

Register Pointer Architecture (RPA)

Indirection

Performance ↑↑↑↑,
without Power and Code Size ↑↑↑↑

Capture More Locality



3Jongsoo Park, Stanford University

Embedded Computing

with

30 frame/sec voice



4Jongsoo Park, Stanford University

Inefficient Microprocessor

MOPS/mW

Microprocessor 0.13

DSP 7

ASIC 200

1000x

[Broderson, ISSCC 2002]



5Jongsoo Park, Stanford University

How to close the gap?

• Efficient Embedded Computing (EEC)
• http://cva.stanford.edu/projects/eec

• Large portion of energy spent on data 
supply
• 45% energy go to cache [Segars, ISSCC 2001]

• This work’s focus:

Energy efficient data supply



6Jongsoo Park, Stanford University

Memory Hierarchy

Register

Cache

Main Memory

Fast, Close

Less Energy
Inflexible



7Jongsoo Park, Stanford University

Example: FIR (1)

for (i = 0; i < NUM_IN - 3; i++) {

acc = 0;

for (j = 0; j < 3; j++) {

acc += coeff[j]*in[i + j];

}

out[j] = acc;

}



8Jongsoo Park, Stanford University

Unrolling
Without unrolling

for (i = 0; i < NUM_IN - 3; i++) {

acc = 0;

for (j = 0; j < 3; j++) {

acc += coeff[j]*in[i + j];

}

out[j] = acc;

}

• 6 loads per input

Inner-loop unrolling

coeff0 = coeff[0]; coeff1 = coeff[1];

coeff2 = coeff[2];

for (i = 0; i < NUM_IN - 3; i++) {

acc = coeff0*in[i];

acc += coeff1*in[i+1];

acc += coeff2*in[i+2];

out[i] = acc;

}

• coeff0~2: allocated in registers

• 3 loads per input

• code size: O(# of taps)



9Jongsoo Park, Stanford University

Full Unrolling
in0 = in[0]; in1 = in[1];

for (i = 0; i < NUM_IN - 3; i +=3 ) {

in2 = in[i + 2];

acc = coeff0*in0;

acc += coeff1*in1;

acc += coeff2*in2;

out[i] = acc;

in0 = in[i + 3];

acc = coeff0*in1;

acc += coeff1*in2;

acc += coeff2*in0;

out[i+1] = acc;

in1 = in[i + 4];

acc = coeff0*in2;

acc += coeff1*in0;

acc += coeff2*in1;

out[i + 2] = acc;

}

• 1 load per input

• code size: O((# of taps)2)



10Jongsoo Park, Stanford University

Problems of Unrolling

• Code size

• 35 taps FIR with ARM ISA

• Inner loop unroll: 14 instruction ���� 75 
instructions (5.4x)

• Fully unroll: 14 instructions ���� 1229 
instructions (88x)



11Jongsoo Park, Stanford University

Our Approach

Indirection

Capture More Locality

Unrolling



12Jongsoo Park, Stanford University

Register Pointer Architecture (RPA)

Register

Pointers

Register

File

WBMEMIF EXID

A

B

Instruction 2

r2

3

r3
4

r4

4



13Jongsoo Park, Stanford University

FIR with RPA (2)

r0

r1

r2

r3 coeff0

r4 coeff1

r5 coeff2

in0

in1

in2

acc = + in1*coeff1 + in2*coeff2

in3

in0*coeff00in1*coeff0 + in2*coeff1 + in0*coeff2

in1

registers
register

pointers

p0

p1

0

3

1

45

2

3

012

45

0



14Jongsoo Park, Stanford University

Experiment Setup

• Configuration

• Applications

• ARM ISA, SimpleScalar, Panalyzer

Unrollable?
No Yes

vs vs



15Jongsoo Park, Stanford University

Execution Time

0.68

replaces memory accesses with register 
accesses



16Jongsoo Park, Stanford University

Energy

0.70

fewer cache accesses compensate larger 
register file’s energy consumption



17Jongsoo Park, Stanford University

Execution Time: RPA vs. Unrolling

0.61

0.41

Avg. 0.89



18Jongsoo Park, Stanford University

Comparison with Unrolling

0.61

0.41



19Jongsoo Park, Stanford University

Total Code Size

3.7

1.09

1.52



20Jongsoo Park, Stanford University

Summary of Comparison

Better

Better

Better



21Jongsoo Park, Stanford University

Conclusion

Indirection (RPA) Unrolling

30% Performance ↑↑↑↑,
without Power and Code Size ↑↑↑↑

Capture More Locality


