
RakshaRaksha: : A Flexible Information Flow

Architecture for Software Security

Michael Dalton, Hari Kannan, Christos Kozyrakis

Computer Systems Laboratory

Stanford University

2

RAKSHA

ISCA’07

MotivationMotivation

� Software security is in a crisis

� Ever increasing range of attacks

• High-level, semantic attacks are now the main threat

� SQL injection, cross-site scripting, directory traversal, …

• Low-level, memory corruption attacks are still common

� Buffer overflow, double free, format string, …

� Need an approach to software security that is

• Robust & flexible

• Practical & end-to-end

• Fast

3

RAKSHA

ISCA’07

DIFT: Dynamic Information Flow TrackingDIFT: Dynamic Information Flow Tracking

� DIFT taints data from untrusted sources

• Extra tag bit per word marks if untrusted

� Propagate taint during program execution

• Operations with tainted data produce tainted results

� Check for suspicious uses of tainted data

• Tainted code execution

• Tainted pointer dereference (code & data)

• Tainted SQL command

� Potential: protection from low-level & high-level threats

4

RAKSHA

ISCA’07

r1:0

r2:idx

r3:&buffer

r4:0

Data T

r5:x

DIFT Example: Memory CorruptionDIFT Example: Memory Corruption

� Tainted pointer dereference ⇒ security trap

int idx = tainted_input;

buffer[idx] = x; // buffer overflow

Vulnerable C Code

set r1 ←←←← &tainted_input

load r2 ←←←← M[r1]

add r4 ←←←← r2 + r3

store M[r4] ←←←← r5 r4:&buffer+idx

r1:&input

r2:idx=input

TRAP

5

RAKSHA

ISCA’07

Software DIFT Systems Software DIFT Systems

� DIFT through code instrumentation [Newsome’05, Quin’06]

• Transparent through dynamic binary translation

� Advantages

• Runs on existing hardware

• Flexible security policies

� Disadvantages

• High overhead (≥3x)

• Does not work with threaded or self-modifying binaries

• Cannot protect OS

� Coverage: control-based, low-level attacks

6

RAKSHA

ISCA’07

Hardware DIFT SystemsHardware DIFT Systems

� DIFT through HW extensions [Suh’04, Crandall’04, Chen’05]

• Extend HW state to include taint bits

• Extend HW instructions to check & propagate taint bits

� Advantages

• Negligible runtime overhead

• Works with threaded and self-modifying binaries

� Disadvantages
• Inflexible security policies

• False positives & false negatives

• Cannot protect OS

� Coverage: control-based & data-based, low-level attacks

7

RAKSHA

ISCA’07

OutlineOutline

� Motivation & DIFT overview

� The Raksha architecture
• Technical approach

• Architectural features

• Full-system prototype

� Evaluation
• Security experiments

• Lessons learned

� Conclusions

8

RAKSHA

ISCA’07

Raksha PhilosophyRaksha Philosophy

� Combine best of HW & SW

• HW: fast checks & propagation, works with any binary

• SW: flexible policies, high-level analysis & decisions

� Goals

• Protect against high-level & low-level attacks

• Protect against multiple concurrent attacks

• Protect OS code

� Comprehensive evaluation

• Run unmodified binaries on full-system prototype

• What works on a simulator, may not work in real life

9

RAKSHA

ISCA’07

Raksha Architecture & FeaturesRaksha Architecture & Features

HW ArchitectureHW Architecture Tags

Operating SystemOperating System
Tag

Aware

App

Binary

App

Binary

4 tag bits per word

HW check/propagate

User-level security traps

App

Binary

App

Binary
Security

Manager

Security

Manager

User 1 SysAdminUser 2

Cross-process info flow

Save/restore tags

Set security policies

Control HW check/propagate

Further SW analysis

Unmodified binaries

10

RAKSHA

ISCA’07

Setting HW Check/Propagate PoliciesSetting HW Check/Propagate Policies

� A pair of policy registers per tag bit

• Set by security manager (SW) when and as needed

� Policy granularity: operation type

• Select input operands to check if tainted

• Select input operands that propagate taint to output

• Select the propagation mode (and, or)

� ISA instructions decomposed to ≥1 operations

• Types: ALU, logical, branch, load/store, compare, FP, …

• Makes policies independent of ISA packaging (RISC/CISC)

11

RAKSHA

ISCA’07

Check Policy Example: Check Policy Example: loadload

load r2 ←←←← M[r1+offset]

Check Enables

1.Check source register
If Tag(r1)==1 then security_trap

2.Check source address
If Tag(M[r1+offset])==1 then security_trap

Both enables may be set simultaneously

load r2 ←←←← M[r1+offset]load r2 ←←←← M[r1+offset]

12

RAKSHA

ISCA’07

Propagate Policy Example: Propagate Policy Example: loadload

load r2 ←←←← M[r1+offset]

Propagate Enables

1. Propagate only from source register
Tag(r2) ←Tag(r1)

2. Propagate only from source address
Tag(r2) ← Tag(M[r1+offset])

3. Propagate only from both sources
OR mode: Tag(r2) ←Tag(r1) | Tag(M[r1+offset])

AND mode: Tag(r2) ←Tag(r1) & Tag(M[r1+offset])

load r2 ←←←← M[r1+offset]load r2 ←←←← M[r1+offset]load r2 ←←←← M[r1+offset]

13

RAKSHA

ISCA’07

UserUser--level Security Trapslevel Security Traps

� Why user-level security traps?

• Fast switch to SW ⇒ combine HW tainting with SW analysis

• No switch to OS ⇒ DIFT applicable to most of OS code

� Requires new operating mode, orthogonal to user/kernel

� On security trap

• Switch to trusted mode & jump to predefined handler

• Maintain user/kernel mode (no address space change)

User

Kernel

Untrusted

Limited instructions; limited address ranges; VM

Trusted

Access to all instructions & address ranges; VM/PM

Tags are

transparent

Direct access to

tag bits & tag
instructions

14

RAKSHA

ISCA’07

Protecting the Trap HandlerProtecting the Trap Handler

�Can malicious user code overwrite handler?

• Use one tag bit to support a sandboxing policy

• Handler data & code accessible only in trusted mode

Memory

User
Code/Data

Handler
Code/Data

Trusted (handler)

Fetch/ld/st

�

�

ld/st data

� ld/st tags

15

RAKSHA

ISCA’07

Protecting the Trap HandlerProtecting the Trap Handler

�Can malicious user code overwrite handler?

• Use one tag bit to support a sandboxing policy

• Handler data & code accessible only in trusted mode

Memory

User
Code/Data

Handler
Code/Data

Untrusted (user)

Fetch/ld/st

�

�

ld/st data

� ld/st tags
TRAP

16

RAKSHA

ISCA’07

Raksha Prototype SystemRaksha Prototype System

� Full-featured Linux system

• On-line since October 2006…

� HW: modified Leon-3 processor

• Open-source, Sparc V8 processor

• Single-issue, in-order, 7-stage pipeline

• Modified RTL for processor & system

• First DIFT system on FPGA

� SW: custom Linux distribution

• Based on 2.6 kernel (modified to be tag aware)

• Set HW policies using preloaded shared libraries

• ≥120 packages (GNU toolchain, apache, postgresql, …)

17

RAKSHA

ISCA’07

Processor PipelineProcessor Pipeline

� Registers & memory extended with tag bits

� Tags flow through pipeline along with corresponding data

• No changes in forwarding logic

• No significant sources of clock frequency slowdown

Policy

Decode

Tag

ALU

Tag

Check

P

C
Decode D-CacheRegFile ALUI-Cache Traps

W

B

18

RAKSHA

ISCA’07

Tag Granularity & StorageTag Granularity & Storage

� Tag granularity

• HW maintains per word tag bits

• What if SW wants byte or bit granularity for some data?

• Maintain in SW using sandboxing & fast user-level traps

� Acceptable performance if not common case…

� Tag storage

• Initial HW ⇒ +4 bits/word in registers, caches, memory

� 12.5% storage overhead

• Multi-granularity tag storage scheme [Suh’04]

� Exploit tag similarity to reduce storage overhead

� Page-level tags ⇒ cache line-level tags ⇒ word-level tags

19

RAKSHA

ISCA’07

Prototype StatisticsPrototype Statistics

� Overhead over original

• Logic: 7%

• Storage: 12.5%

• Clock frequency: none

� Application performance

• Check/propagate tags ⇒ no slowdown

• Overhead depends on SW analysis

� Frequency of traps, SW complexity, …

� Worst-case example from experiments

• Filtering low-level false positives/negatives

• Bzip2: +33% with Raksha’s user-level traps

• Bzip2: +280% with OS trapsGR-CPCI-XC2V

Leon-3

@40MHz

512MB

DRAM

Ethernet

AoE

20

RAKSHA

ISCA’07

Security ExperimentsSecurity Experiments

Program Lang. Attack Detected Vulnerability

traceroute C Double Free Tainted data ptr

polymorph C Buffer Overflow Tainted code ptr

Wu-FTPD C Format String Tainted ‘%n’ in vfprintf string

gzip C Directory Traversal Open tainted dir

Wabbit PHP Directory Traversal Escape Apache root w. tainted ‘..’

OpenSSH C Command Injection Execve tainted file

ProFTPD C SQL Injection Tainted SQL command

htdig C++ Cross-site Scripting Tainted <script> tag

PhpSysInfo PHP Cross-site Scripting Tainted <script> tag

Scry PHP Cross-site Scripting Tainted <script> tag

� Unmodified Sparc binaries from real-world programs
• Basic/net utilities, servers, web apps, search engine

21

RAKSHA

ISCA’07

Security ExperimentsSecurity Experiments

Program Lang. Attack Detected Vulnerability

traceroute C Double Free Tainted data ptr

polymorph C Buffer Overflow Tainted code ptr

Wu-FTPD C Format String Tainted ‘%n’ in vfprintf string

gzip C Directory Traversal Open tainted dir

Wabbit PHP Directory Traversal Escape Apache root w. tainted ‘..’

OpenSSH C Command Injection Execve tainted file

ProFTPD C SQL Injection Tainted SQL command

htdig C++ Cross-site Scripting Tainted <script> tag

PhpSysInfo PHP Cross-site Scripting Tainted <script> tag

Scry PHP Cross-site Scripting Tainted <script> tag

� Protection against low-level memory corruptions
• Both control & non-control data attacks

22

RAKSHA

ISCA’07

Security ExperimentsSecurity Experiments

Program Lang. Attack Detected Vulnerability

traceroute C Double Free Tainted data ptr

polymorph C Buffer Overflow Tainted code ptr

Wu-FTPD C Format String Tainted ‘%n’ in vfprintf string

gzip C Directory Traversal Open tainted dir

Wabbit PHP Directory Traversal Escape Apache root w. tainted ‘..’

OpenSSH C Command Injection Execve tainted file

ProFTPD C SQL Injection Tainted SQL command

htdig C++ Cross-site Scripting Tainted <script> tag

PhpSysInfo PHP Cross-site Scripting Tainted <script> tag

Scry PHP Cross-site Scripting Tainted <script> tag

� 1st DIFT architecture to detect semantic attacks
• Without the need to recompile applications

23

RAKSHA

ISCA’07

Security ExperimentsSecurity Experiments

Program Lang. Attack Detected Vulnerability

traceroute C Double Free Tainted data ptr

polymorph C Buffer Overflow Tainted code ptr

Wu-FTPD C Format String Tainted ‘%n’ in vfprintf string

gzip C Directory Traversal Open tainted dir

Wabbit PHP Directory Traversal Escape Apache root w. tainted ‘..’

OpenSSH C Command Injection Execve tainted file

ProFTPD C SQL Injection Tainted SQL command

htdig C++ Cross-site Scripting Tainted <script> tag

PhpSysInfo PHP Cross-site Scripting Tainted <script> tag

Scry PHP Cross-site Scripting Tainted <script> tag

� Protection is independent of programming language
• Catch suspicious behavior, regardless of language choice

24

RAKSHA

ISCA’07

HW Policies for Security ExperimentsHW Policies for Security Experiments

� Concurrent protection using 4 policies

1. Memory corruption (LL attacks)

• Propagate on arithmetic, load/store, logical

• Check on tainted pointer/PC use

• Trap handler untaints data validated by user code

2. String tainting (LL & HL attacks)

• Propagate on arithmetic, load/store, logical

• No checks

3. System call interposition (HL attacks)

• No propagation

• Check on system call in untrusted mode

• Trap handler invokes proper SW analysis

4. Sandboxing policy (for trap handler protection)

• Handler taints its code & data

• Check on fetch/loads/stores in untrusted mode

25

RAKSHA

ISCA’07

Lessons LearnedLessons Learned

� HW support for fine-grain tainting is crucial

• For both high-level and low-level attacks

• Provides fine-grain info to separate legal uses from attacks

� Lesson from high-level attacks

• Check for attacks at system calls

• Provides complete mediation, independent language/library

� Lessons from low-level attack

• Fixed policies from previous DIFT systems are broken

� False positives & negatives even within glibc

• Problem: what constitutes validation of tainted data?

• Need new SW analysis to couple with HW tainting

� Raksha’s flexibility and extensibility are crucial

26

RAKSHA

ISCA’07

ConclusionsConclusions

� Raksha: flexible DIFT architecture for SW security

• Protects against high-level & low-level attacks

• Protects against multiple concurrent attacks

• Protects OS code (future work)
•

� Raksha characteristics

• Robust – applicable to high-level & low-level attacks

• Flexible – programmable HW; extensible through SW

• Practical – works with any binary

• End-to-end – applicable to OS

• Fast – HW tainting & fast security traps

27

RAKSHA

ISCA’07

Questions? Questions?

� Want to use Raksha?

• Keep an eye on http://raksha.stanford.edu

• Raksha port to Xilinx XUP board ($300 for academics)

• Full RTL + Linux distribution

• Expected release date in early July

