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Abstract

Transactional Memory (TM) simplifies parallel pro-
gramming by supporting atomic and isolated execution of
user-identified tasks. To date, TM programming has re-
quired the use of libraries that make it difficult to achieve
scalable performance with code that is easy to develop and
maintain. For TM programming to become practical, it is
important to integrate TM into familiar, high-level environ-
ments for parallel programming.

This paper presents OpenTM, an application program-
ming interface (API) for parallel programming with trans-
actions. OpenTM extends OpenMP, a widely used API for
shared-memory parallel programming, with a set of com-
piler directives to express non-blocking synchronization and
speculative parallelization based on memory transactions.
We also present a portable OpenTM implementation that
produces code for hardware, software, and hybrid TM sys-
tems. The implementation builds upon the OpenMP support
in the GCC compiler and includes a runtime for the C pro-
gramming language.

We evaluate the performance and programmability fea-
tures of OpenTM. We show that it delivers the performance
of fine-grain locks at the programming simplicity of coarse-
grain locks. Compared to transactional programming with
lower-level interfaces, it removes the burden of manual an-
notations for accesses to shared variables and enables easy
changes of the scheduling and contention management poli-
cies. Overall, OpenTM provides a practical and efficient
TM programming environment within the familiar scope of
OpenMP.

1 Introduction
Transactional Memory (TM) [16] is emerging as a

promising technology to address the difficulty of parallel
programming for multi-core chips. With TM, programmers
simply declare that certain code sections should execute as
atomic and isolated transactions with respect to all other

code. Concurrency control as multiple transactions execute
in parallel is the responsibility of the system. Several TM
systems have been proposed, based on hardware [21, 24],
software [26, 11], or hybrid techniques [18, 27, 6].

To achieve widespread use, TM must be integrated into
practical and familiar programming environments. To date,
TM programming has primarily been based on libraries that
include special functions to define transaction boundaries,
manipulate shared data, and control the runtime system.
While the library-based approach is sufficient for initial
experimentation with small programs, it is inadequate for
large software projects by non-expert developers. Library-
based code is difficult to comprehend, maintain, port, and
scale, since the programmer must manually annotate ac-
cesses to shared data. Library annotations can also compli-
cate static analysis and reduce the effectiveness of compiler
optimizations [2].

This paper presents OpenTM, an application program-
ming interface (API) for parallel programming with trans-
actions. OpenTM extends the popular OpenMP API for
shared-memory systems [1] with the compiler directives
necessary to express both non-blocking synchronization
and speculative parallelization using memory transactions.
OpenTM provides a simple, high-level interface to express
transactional parallelism, identify the role of key variables,
and provide scheduling and contention management hints.
OpenTM code can be efficiently mapped to a variety of
hardware (HTM), software (STM), and hybrid TM imple-
mentations. It can also be tuned by an optimizing compiler
and dynamically scheduled by the runtime system.

The specific contributions of this work are:

• We define the set of extensions to OpenMP that sup-
port both non-blocking synchronization and specula-
tive parallelization using transactional memory tech-
niques. Apart from integrating memory transactions
with OpenMP constructs such as parallel loops and
sections, the extensions address issues such as nested
transactions, conditional synchronization, scheduling,
and contention management.



• We describe an OpenTM implementation for the C
programming language. The environment is based on
the OpenMP support in the GCC compiler [25] and
produces executable code for hardware, software, and
hybrid TM systems. The implementation is easy to
port to any TM system that provides a basic low-level
interface for transactional functionality.

• We evaluate the performance and programmability
features of parallel programming with OpenTM. Us-
ing a variety of programs, we show that OpenTM code
is simple, compact, and scales well.

The rest of the paper is organized as follows. Section 2
reviews the OpenMP API, while Section 3 introduces the
OpenTM extensions. Section 4 describes our first OpenTM
implementation. Sections 5 and 6 present the quantitative
evaluation. Section 7 reviews related work, and Section 8
concludes the paper.

2 OpenMP Overview
OpenMP is a widely used API for shared-memory par-

allel programming [1]. The specification includes a set of
compiler directives, runtime library routines, and environ-
ment variables. OpenMP follows the fork-join parallel ex-
ecution model. The master thread begins a program ex-
ecution sequentially. When the master thread encounters a
parallel construct, it creates a set of worker threads. All
workers execute the same code inside the parallel con-
struct. When a work-sharing construct is encountered, the
work is divided among the concurrent workers and executed
cooperatively. After the end of a work-sharing construct,
every thread in the team resumes execution of the code in
the parallel construct until the next work-sharing op-
portunity. There is an implicit barrier at the end of the
parallel construct, and only the master thread executes
user code beyond that point.

The OpenMP memory model is shared memory with
relaxed consistency [3]. All threads can perform load
and store accesses to variables in shared memory. The
parallel directive supports two types of variables within
the corresponding structured block: shared and private.
Each variable referenced within the block has an origi-
nal variable with the same name that exists outside of the
parallel construct. Accesses to shared variables from
any thread will access the original variable. For private vari-
ables, each thread will have its own private copy of the orig-
inal variable.

OpenMP provides programmers with five classes of di-
rectives and routines: parallel, work-sharing, synchroniza-
tion, data environment, and runtime library routines. The
parallel directive starts a parallel construct. The work-
sharing directives can describe parallel work for iterative
(loops) and non-iterative (parallel sections) code patterns.

The following is a simple example of a parallel loop (forall)
in OpenMP:

#pragma omp parallel for
for(i=0;i<n;i++)
b[i]=(a[i]*a[i])/2.0;

Synchronization constructs and routines, such as
critical and barrier, allow threads to coordinate on
shared-memory accesses. Data environment primitives de-
scribe the sharing attributes of variables referenced in par-
allel regions. Finally, runtime routines specify a set of in-
terfaces and variables used for runtime optimizations, syn-
chronization, and scheduling. A detailed specification and
several tutorials for OpenMP are available in [1].

3 The OpenTM API
OpenTM is designed as an extension of OpenMP to sup-

port non-blocking synchronization and speculative paral-
lelization using transactional techniques. Hence, OpenTM
inherits the OpenMP execution model, memory seman-
tics, language syntax, and runtime constructs. Any
OpenMP program is a legitimate OpenTM program. Non-
transactional code, parallel or sequential, behaves exactly as
described in the OpenMP specification. We discuss the in-
teraction of the new OpenTM features with certain OpenMP
features in Section 3.5.

3.1 OpenTM Transactional Model

The transactional model for OpenTM is based on three
key concepts.

Implicit Transactions: OpenTM supports implicit
transactions. The programmer simply defines transaction
boundaries within parallel blocks without any additional an-
notations for accesses to shared data. All memory opera-
tions are executed implicitly on transactional state in order
to guarantee atomicity and isolation. Implicit transactions
minimize the burden on programmers but require compiler
and/or hardware support in order to implement transactional
bookkeeping. For STM systems, the compiler inserts the
necessary barriers, while for HTM systems, the hardware
performs bookkeeping in the background as the transaction
executes regular loads and stores [2]. Even with hardware
support, compiler optimizations can be highly profitable.
Another advantage of implicit transactions is that they sim-
plify software reuse and composability. A programmer can
reuse a function with implicit transactions without having
to reconsider the barriers necessary for transactional book-
keeping under the new context.

Strong Isolation: In OpenTM programs, memory trans-
actions are atomic and isolated with respect to other trans-
actions and non-transactional accesses. There also exists
a consistent ordering between committed transactions and
non-transactional accesses for the whole system. This prop-
erty is known as strong isolation and is necessary for correct



and predictable interactions between transactional and non-
transactional code [19]. All hardware [21, 24] and some
hybrid [6] TM systems guarantee strong isolation. For soft-
ware TM systems, the compiler must insert additional read
and write barriers outside of transactions in order to imple-
ment strong isolation [29].

Virtualized Transactions: OpenTM requires that the
underlying TM system supports virtualized transactions
that are not bounded by execution time, memory footprint,
and nesting depth. The TM system should guarantee cor-
rect execution even when transactions exceed a scheduling
quantum, exceed the capacity of hardware caches or phys-
ical memory, or include a large number of nesting levels.
While it is expected that the majority of transactions will
be short-lived [4, 10, 6], programmers will naturally expect
that any long-lived transactions, even if infrequent, will be
handled correctly in a transparent manner. Virtualization
is a challenge for HTM systems that use hardware caches
and physical addresses for transactional bookkeeping. Ex-
cluding the performance implications, OpenTM is agnos-
tic to the exact method used to support virtualized transac-
tions [4, 9, 8].

3.2 Basic OpenTM Constructs

The following are the basic OpenTM extensions for par-
allel programming with transactions.

Transaction Boundaries: OpenTM introduces the
transaction construct to specify the boundaries of
strongly isolated transactions. The syntax is:

#pragma omp transaction [clause[[,] clause]...]
structured-block

where clause is one of the following: ordered,
nesting(open|closed). ordered is used to spec-
ify a sequential commit order between executions of this
transaction by different threads. This is useful for specu-
lative parallelization of sequential code. If not specified,
OpenTM will generate unordered yet serializable transac-
tions. Unordered transactions are useful for non-blocking
synchronization in parallel code. During the execution of
transactions, the underlying TM system detects conflicting
accesses to shared variables in order to guarantee atomic-
ity and isolation. On a conflict, the system aborts and re-
executes transactions based on the ordering scheme and a
contention management policy. We discuss the nesting
clause along with the advanced OpenTM features in Sec-
tion 3.3. Note that the definition of structured-block is the
same as in OpenMP.

Transactional Loop: The transfor construct spec-
ifies a loop with iterations executing in parallel as atomic
transactions. The transfor syntax is:

#pragma omp transfor [clause[[,] clause]...]
for-loop

transfor reuses most of the clauses of the OpenMP
for construct such as private and reduction to iden-
tify private or reduction variables, respectively. Certain
clauses are extended or added to specify the transactional
characteristics of the associated loop body. The ordered
clause specifies that transactions will commit in sequen-
tial order, implying a foreach loop with sequential seman-
tics (speculative loop parallelization). If ordered is not
specified, transfor will generate unordered transactions,
which implies an unordered foreach loop with potential de-
pendencies. The OpenMP for construct specifies a forall
loop.

The transfor construct can have up to three param-
eters in the schedule clause. Just as with the OpenMP
for, the first parameter specifies how loop iterations are
scheduled across worker threads (see discussion in Sec-
tion 3.4). The second parameter identifies the number of
iterations (chunk size), assigned to each thread on every
scheduling decision. The tradeoff for chunk size is between
scheduling overhead and load balance across threads. The
third parameter specifies how many loop iterations will be
executed per transaction by each worker thread (transac-
tion size). If it is not specified, each iteration executes as a
separate transaction. The tradeoff for transaction size is be-
tween the overhead of starting/committing a transaction and
the higher probability of conflicts for long-running transac-
tions.

The following code example uses a transfor to per-
form parallel histogram updates. In this case, iterations are
statically scheduled across threads with a chunk size of 42
iterations. Transactions are unordered with 6 iterations per
transaction.

void histogram(int *A,int *bin){
#pragma omp transfor schedule(static,42,6)
for(i=0;i<NUM_DATA;i++){
bin[A[i]]++;}}

A user can also define transactions using the
transaction construct within the loop body of an
OpenMP for construct. This approach allows program-
mers to write tuned code with transactions smaller than a
loop body that may reduce the pressure on the underlying
TM system. On the other hand, it requires better under-
standing of the dependencies within the loop body and
slightly more coding effort.

Transactional Sections: OpenTM supports transactions
in parallel sections (non-iterative parallel tasks) using the
transsections construct. Its syntax is:

#pragma omp transsections [clause[[,] clause]...]
[#pragma omp transsection]

structured-block 1
[#pragma omp transsection]

structured-block 2
...



Compared to OpenMP sections, transsections
uses an additional ordered clause to specify sequential
transaction ordering. While sections implies that the
structured blocks are proven to be parallel and independent,
transsections can express parallel tasks with potential
dependencies. Similar to the loop case, transactional sec-
tions can also be specified using the transaction con-
struct within OpenMP sections.

The following is a simple example of method-level spec-
ulative parallelization using OpenTM transsections
construct:

#pragma omp transsections ordered {
#pragma omp transsection
WORK_A();

#pragma omp transsection
WORK_B();

#pragma omp transsection
WORK_C();}

3.3 Advanced OpenTM Constructs

The basic OpenTM constructs discussed above are suf-
ficient to express the parallelism in a wide range of appli-
cations. Nevertheless, OpenTM also introduces a few ad-
vanced constructs to support recently proposed techniques
for TM programming. These constructs require advanced
features in the underlying TM system.

Alternative execution paths: The orelse construct
supports alternative execution paths for aborted transac-
tions [15, 2]. The syntax is:

#pragma omp transaction
structured-block 1

#pragma omp orelse
structured-block 2

...

When the transaction for block 1 successfully commits,
the entire operation completes and block 2 never executes.
If the transaction for block 1 aborts for any reason, the
code associated with the orelse construct is executed as
an atomic transaction. A program can cascade an arbi-
trary number of orelse constructs as alternative execution
paths.

Conditional synchronization: OpenTM supports con-
ditional synchronization in atomic transactions using the
omp retry() runtime routine. omp retry() indicates
that the transaction is blocked due to certain conditions [15].
The runtime system will decide whether the transaction will
be re-executed immediately or the corresponding thread
will be suspended for a while. The transaction can use
the omp watch() routine to notify the runtime system
that it should monitor a set of addresses and re-execute the
blocked transaction when one of them has been updated [7].
The following is a simple example of the conditional syn-
chronization within a transaction:

#pragma omp transaction {
if (queue.status == EMPTY) {
omp_watch(addr);
omp_retry();

} else {
t = dequeue(queue);}

Compared to conditional/guarded atomic blocks or con-
dition variables [14, 2], conditional synchronization with
retry allows for complex blocking conditions that can occur
anywhere within the transaction. Moreover, the directive-
based OpenMP approach places additional restrictions in
the specification of the blocking condition. For example,
a programmer cannot use array indices to specify the con-
dition. Finally, retry is composable [15]. We should note
that when omp retry() is called in a transaction that
also uses orelse, the transaction is aborted and control
is transfered immediately to the alternative execution path.

Nested Transactions: The nesting clause specifies
the behavior of nested transactions. If nesting is not
specified, OpenTM uses closed-nested transactions by de-
fault. Closed-nested transactions can abort due to depen-
dencies without causing their parent to abort [22]. The
memory updates of closed-nested transactions become vis-
ible to other threads only when the outermost transaction
commits. The open clause allows a program to start an
open-nested transaction that can abort independently from
its parent but makes its updates visible immediately upon its
commit, regardless of what happens to the parent transac-
tion [22]. Open-nested transactions may require finalizing
and compensating actions that execute when the outermost
transaction commits or aborts, respectively [13]. While we
do not expect that many programmers will use open-nested
transactions directly, they can be helpful with addressing
performance issues and the implementation of additional
programming constructs [22].

Transaction Handlers: The handler construct spec-
ifies software handlers that are invoked when a transaction
commits or aborts. OpenTM handlers follow the semantics
presented in [22]. The handler syntax is:

#pragma omp transaction [clause[[,] clause]...]
structured-block 1

#pragma omp handler clause
structured-block 2

where clause is one of the following: commit, abort,
violation. Violation refers to a rollback triggered
by a dependency, while abort is invoked by the transac-
tion itself. The handler construct can be associated
with transaction, transfor, transsections,
and orelse constructs. The code below provides an exam-
ple with an abort handler used to compensate for an open-
nested transaction:



Routine Description
omp in transaction() Return true if executed within transaction.
omp get nestinglevel() Return the nesting-level of the current

transaction.
omp abort() User-initiated abort of the current transac-

tion.
omp retry() User-initiated retry of the current transac-

tion.
omp watch() Add an address to a watch-set [7].
omp set cm() Set the contention management scheme.
omp get cm() Return the current contention management

scheme.

Table 1. The extra runtime routines in OpenTM.

#pragma omp transaction {
#pragma omp transaction nesting(open)
{
WORK_A();

} //end of open-nested transaction
#pragma omp handler abort
{
COMPENSATE_WORK_A();

}} //end of parent transaction

3.4 Runtime System

OpenTM also extends the runtime system of OpenMP to
support transactional execution. Table 1 summarizes the ad-
ditional runtime library routines available to programmers.

Loop Scheduling: The for construct in OpenMP pro-
vides four options for scheduling iterations across worker
threads: static, dynamic, guided, and runtime.
Static scheduling statically distributes work to threads,
while dynamic scheduling assigns a chunk of iterations to
threads upon request during runtime. Guided scheduling
is similar to dynamic scheduling, but the chunk size de-
creases exponentially to avoid work imbalance. Runtime
scheduling makes the decision dependent on the run-sched-
var environment variable at runtime [1]. OpenTM reuses
these options but adds an additional task of grouping loop
iterations into transactions. When grouping in a dynamic
or guided manner, the system can use runtime feedback to
minimize the overhead of small transactions without run-
ning into the virtualization overhead or the higher probabil-
ity of conflicts of larger transactions.

Contention Management: OpenTM provides two run-
time routines, presented in Table 1, to control the con-
tention management scheme of the underlying TM sys-
tem [12, 28]. The omp get cm() routine returns the type
of the currently used contention management scheme. The
omp set cm() routine allows the user to the change con-
tention management scheme for the whole system in run-
time. Programmers can use this interface to adapt con-
tention management to improve performance robustness or
provide fairness guarantees [12]. The exact parameters for
omp set cm() depend on the available policies. For ex-
ample, our current implementation supports a simple back-

off scheme [28] that requires a parameter to specify the
maximum number of retries before an aborted transaction
gets priority to commit. As TM systems mature, the corre-
sponding contention management techniques will be inte-
grated into OpenTM.

3.5 Open Issues and Discussion

There are certain subtle issues about OpenTM. Our ini-
tial specification takes a conservative approach in several
cases. However, we expect that practical experience with
transactional applications, further developments in TM re-
search, and advanced compiler support, will provide more
sophisticated solutions for future versions of OpenTM.

OpenMP Synchronization: OpenTM does not allow
the use of OpenMP synchronization constructs within
transactions (e.g., critical, atomic, mutex, and
barrier). OpenMP synchronization constructs have
blocking semantics and can lead to deadlocks or viola-
tions of strong isolation when used within transactions.
We also disallow the use of transactions within OpenMP
synchronization constructs, as there can be deadlock sce-
narios if omp retry() is used. In general, separating
transactional code from blocking synchronization will help
programmers reason about the correctness of their code
at this point. The blocking semantics of atomic and
critical are also the primary reason we introduced the
non-blocking transaction construct. Reusing atomic
or critical for TM programming could lead to dead-
locks or incorrect results for existing OpenMP programs.

I/O and System Calls: OpenMP requires that any li-
braries called within parallel regions are thread-safe. Sim-
ilarly, OpenTM requires that any libraries called within
transactions are transaction-safe. The challenge for transac-
tional systems is routines with permanent side effects such
as I/O and system calls. Currently, OpenTM does not pro-
pose any specification for such routines. Each OpenTM
implementation is responsible for specifying which library
calls can be safely used within transactions as well as what
are the commit and abort semantics. There is ongoing re-
search on how to integrate I/O and system calls with trans-
actions using buffering and serialization techniques [22].

Nested Parallelism: For the moment, we do not allow
user code to spawn extra worker threads within a transac-
tion.

Relaxed Conflict Detection: Recent papers have pro-
posed directives that exclude certain variables from conflict
detection (e.g., race [31] or exclude [23]). The moti-
vation is to reduce the TM bookkeeping overhead and any
unnecessary conflicts. At the moment, OpenTM does not
include such directives for multiple reasons. First, with-
out strong understanding of the dependencies in the algo-
rithm, use of such directives can easily lead to incorrect
or unpredictable program behavior. Second, the directive-
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Figure 1. An overview of our first OpenTM imple-
mentation.

based syntax in OpenMP is static and quite limiting with
respect to variables that it can describe (no array indices or
pointer dereferences). Finally, the private and shared
clauses in OpenMP already provide programmers with a
mechanism to identify variables that are thread-private and
participate in conflict detection between concurrent trans-
actions. Nevertheless, in future versions of OpenTM, we
will examine the inclusion of runtime routines for the early
release [30].

Compilation Issues: For software TM systems, we must
guarantee that any function called within an OpenTM trans-
action is instrumented for TM bookkeeping. If function
pointers or partial compilation are used, the compiler may
not be able to statically identify such functions. In this
case, the programmer must use a tm function directive
to identify functions that may be called within a transac-
tion [32]. The compiler is responsible for cloning the func-
tion in order to introduce the instrumentation and the code
necessary to steer control to the proper clone at any point in
time. For all TM systems, the compiler can freely reorder
code within transactions, as it is guaranteed that any updates
they perform will be made visible to the rest of the system
atomically, when the transaction commits.

4 A First OpenTM Implementation
At the early stage of this work, we implemented

OpenTM using the Cetus source-to-source translation
framework [20]. While source-to-source translation al-
lowed us to quickly develop a portable prototype, it has
two important shortcomings. First, it limits the degree
of compiler optimizations that can be applied to OpenTM
code. For software and hybrid TM systems, optimizations
such as eliminating redundant barriers or register check-
points can have a significant impact on performance. In
a full compiler framework, existing compilation passes can
implement most of these optimizations [2, 32, 29], while,
in a source-to-source translation framework, the type and
scope of optimizations are limited. Second, source-to-
source translation complicates code development, as de-
bugging with tools like GDB must be done at the level of
the low-level, translated output instead of the high-level,

OpenTM code.
Our current OpenTM implementation is based on a full

compiler. Specifically, we extended the GNU OpenMP
(GOMP) environment [25], an OpenMP implementation for
GCC 4.3.0. GOMP consists of four main components: the
parser, the intermediate representation (IR), the code gen-
erator, and the runtime library. We extended the four com-
ponents in the following manner to support OpenTM. The
parser is extended to identify and validate the OpenTM
pragmas and to generate the corresponding IRs or report
compile-time errors. The GENERIC and GIMPLE inter-
mediate languages were extended to represent the features
of the low-level TM interface described in Table 2. Sim-
ilar to OpenMP, the code generator performs all the code
transformations for OpenTM, including the corresponding
GIMPLE expansion and calls to runtime library routines
before the Static Single Assignment (SSA) code generation
stage [25].

The OpenTM implementation can generate code for
hardware, software, and hybrid TM systems. Figure 1 sum-
marizes the code generation process. The user code is writ-
ten in C with OpenTM directives and does not have to be
modified to target a different TM system. Command-line
options guide the compiler to produce code for the right
TM system. While the compiler targets a single low-level
TM interface (see Table 2), it may use just a subset of the
interface when targeting a specific TM system. For exam-
ple, hardware TM systems do not require the use of read
and write barriers such as TM OpenWordForRead() and
TM OpenWordForWrite(). The compiler implements
conventional optimizations (e.g., common subexpression
elimination) and optimizations specific to the TM sys-
tem [2]. Finally, the code is linked with the OpenTM run-
time library and the TM system library that provides the
implementation of the low-level interface.

We have successfully used the OpenTM implementation
with three x86-based TM systems: a hardware TM system
similar to TCC [21], the TL2 software TM system [11],
and the SigTM hybrid TM system [6]. The implementa-
tion can target any TM system that supports the assumed
low-level TM interface. GCC supports virtually all archi-
tectures, hence the implementation can target TM systems
that do not use the x86 ISA. We are currently introducing
the compiler optimizations for software TM systems [2, 29].
Note that, compared to the related work, the optimization
opportunities can be somewhat reduced, as the OpenTM tar-
gets unmanaged languages such as C and C++, instead of a
managed language like Java or C# [32].

Low-level TM Interface: Table 2 presents the low-level
TM interface targeted by our OpenTM compiler. The inter-
face describes the basic functionality in hardware, software,
and hybrid TM systems. Columns H and S specify which
functions are required by hardware and software TM sys-



Interface Description H S
void TM BeginClosed(txDesc*) Make a checkpoint and start a closed-nested transaction.

√ √

void TM CommitClosed(txDesc*) Commit a closed-nested transaction.
√ √

void TM BeginOpen(txDesc*) Make a checkpoint and start an open-nested transaction.
√ √

void TM CommitOpen(txDesc*) Commit an open-nested transaction.
√ √

bool TM Validate(txDesc*) Validate the current transaction.
√ √

void TM Abort(txDesc*) Abort the current transaction.
√ √

void TM RegHd(txDesc*,type,
callbackFn*,params)

Register a software handler; txDesc: transaction descriptor, type: commit, violation,
abort, callbackFn: function pointer to the handler.

√ √

void TM InvokeHd(txDesc*,type,
callbackFn*,params)

Invoke a software handler.
√ √

void TM SetCM(cmDesc) Set the contention management policy; cmDesc: contention management descriptor (type
& parameters).

√ √

cmDesc TM GetCM() Return a contention management descriptor for the current policy.
√ √

txDesc* TM GetTxDesc(txDesc*) Get a transaction descriptor.
√ √

uint32 TM MonolithicReadWord(addr) Monolithic transactional read barrier.
√

void TM MonolithicWriteWord(addr, data) Monolithic transactional write barrier.
√

void TM OpenWordForRead(addr) Insert address in the transaction’s read-set for conflict detection (decomposed read).
√

uint32* TM OpenWordForWrite(addr, data) Eager systems: insert into transaction’s write-set and create undo log entry; Lazy systems:
insert into transactions’s write-set, allocate write-buffer entry and return its address.

√

uint32 TM ReadWordFromWB(addr) Lazy systems only: search write-buffer for address; if found, read value from write-buffer;
otherwise return value in a regular memory location. Used when it is not certain at compile
time, if a word has been written by this transaction or not.

√

bool TM ValidateWord(addr) Check the address for conflicts.
√

Table 2. The low-level TM interface targeted by the OpenTM compiler during code generation.

tems, respectively. Hybrid TM systems require the same
functions as software TM systems. While these functions
may be implemented differently across TM systems (e.g.,
TM systems with eager [26] vs. lazy [11] version manage-
ment), they are sufficient to control the execution of mem-
ory transactions. Given an implementation of this interface,
our OpenTM compiler can generate correct code for any
TM system.

The first set of functions in Table 2 provides user-level
threads to begin, commit, and abort transactions. These
are common across all types of TM systems. We also
require mechanisms to register and invoke software han-
dlers on abort, commit, or a conflict [22]. The sec-
ond set of functions provides the read and write barri-
ers necessary for transactional bookkeeping for software
and hybrid TM systems. We support both monolithic
barriers (e.g., TM MonolithicReadWord()) and de-
composed barriers (e.g., TM OpenWordForRead() and
TM ReadWordFromWB() or TM ValidateWord()).
While monolithic barriers are enough for correct execution,
decomposed barriers reveal more opportunities for compiler
optimization [2].

Runtime System: The runtime system in our current
OpenTM implementation extends the GOMP runtime sys-
tem with the small set of runtime library routines in Table 1.
The system supports dynamic scheduling for transactional
loops. It also provides basic support for contention manage-
ment using a simple backoff policy. Conditional synchro-
nization is currently implemented with immediate retries.
Support for suspending threads on conditional synchroniza-
tion is currently in progress. We are also planning to inte-
grate the runtime system with online profiling tools in order

Feature Description
Processors 1–16 x86 cores, in-order, single-issue
L1 Cache 64-KB, 32-byte line, private

4-way associative, 1 cycle latency
Network 256-bit bus, split transactions

pipelined, MESI protocol
L2 Cache 8-MB, 32-byte line, shared

32-way associative, 12 cycle latency
Main Memory 100 cycles latency

up to 8 outstanding transfers

Signatures 2048 bits per signature register

Table 3. Parameters for the simulated multi-core
system.

to improve scheduling efficiency.

5 Experimental Methodology
5.1 Environment

We use an execution-driven simulator that models multi-
core systems with MESI coherence and support for hard-
ware or hybrid TM systems. Table 3 summarizes the pa-
rameters for the simulated CMP architecture. All opera-
tions, except loads and stores, have a CPI of 1.0. How-
ever, all the details in the memory hierarchy timings, in-
cluding contention and queueing events, are modeled. For
the hardware TM system (HTM), the caches are enhanced
with meta-data bits to support lazy version management and
optimistic conflict detection [21]. For the hybrid TM system
(SigTM), we use hardware signatures to accelerate conflict
detection [6]. Data versioning is performed in software and,
apart from the signatures, no further hardware modifications
are needed. We also use the Sun TL2 software TM (STM)
system [11], running on top of a conventional multi-core
system without hardware enhancements for TM. The com-



piler output for the STM system can run on real machines.
However, we run STM code on the simulated system to fa-
cilitate comparisons between the three TM systems (hard-
ware, hybrid, and software).

5.2 Applications

We use four applications and one microbenchmark in our
evaluation [6, 17]: delaunay implements Delaunay mesh
generation for applications such as graphics rendering and
PDE solvers; genome is a bioinformatics application and
performs gene sequencing; kmeans is a data mining algo-
rithm that clusters objects into k partitions based on some
attributes; vacation is similar to the SPECjbb2000 bench-
mark and implements a travel reservation system powered
by an in-memory database; histogram is a microbenchmark
with multiple threads concurrently updating an array of his-
togram bins after some computational work. For kmeans
and vacation, we use two input datasets that lead to differ-
ent frequency of conflicts between concurrent transactions
(low/high).

We developed the OpenTM code for all applications us-
ing coarse-grain transactions to execute concurrent tasks
that operate on various shared data structures such as a
graph and a tree. Parallel coding at this level is easy because
the programmer does not have to understand or manually
manage the inter-thread dependencies within the data struc-
ture code. The parallel code is very close to the sequential
algorithm. The resulting runtime behavior is coarse-grain
transactions account for most of the runtime. For compar-
ison, we developed additional versions of the application
code. We directly used the low-level interface available
through the TM system library to develop another trans-
actional version of the code with the similar paralleliza-
tion. Due to the lower-level syntax, this version tends to
be cumbersome to develop but can provide some opportu-
nities for optimizations that are not exposed at the OpenTM
level. Coarse-grain lock (CGL) versions are implemented
by simply replacing transaction boundaries with lock ac-
quisitions and releases. Fine-grain lock (FGL) versions are
implemented by using lock primitives at the finest granular-
ity possible in order to maximize concurrency. FGL code is
quite difficult to debug, tune, and port, as the programmer
is responsible for fine-grain concurrency management.

5.3 Example: Vacation Pseudocode in OpenTM

To show the simplicity of programming with OpenTM,
Figure 2 presents the pseudocode of vacation. The pro-
grammer simply uses the transaction construct to
specify that client requests should run in parallel as atomic
transactions. There is no need to prove that the requests
are independent or use low-level locks to manage the in-
frequent dependencies. This code achieves good perfor-
mance because the underlying TM system implements op-
timistic concurrency, and conflicts between client requests

void client_run(args) {
for(i=0; i<numOps; i++) {
#pragma omp transaction
{ /* begin transaction */
switch(action) {
case MAKE_RESERVATION:
do_reservation();

case DELETE_CUSTOMER:
do_delete_customer();

...}
} /* end transaction */ }}

void main() {
#pragma omp parallel {
client_run(args);}}

Figure 2. OpenTM pseudocode for vacation.

Application File # of extra C lines
FGL LTM-H LTM-S OTM

delaunay

cavity.c 43 0 0 0
delaunay.c 16 18 24 22

mesh.c 0 0 4 0
worklist.c 0 0 10 0

genome

genome.c 8 8 10 8
hashtable.c 3 0 6 0
sequencer.c 25 32 58 11

table.c 3 0 0 0

kmeans normal.c 25 23 31 11

vacation

client.c 0 2 2 2
customer.c 0 0 1 0
manager.c 0 0 7 0

rbtree.c 11 0 105 0
reservation.c 0 0 20 0

vacation.c 8 8 10 8

Table 4. Number of extra lines of C code needed to
parallelize each application using fine-grain locks,
the low-level TM interface for hardware and soft-
ware TM systems, and OpenTM.

are not particularly common. Using coarse-grain locks re-
quires similar programming effort, but does not scale due
to serialization. Better scalability can be achieved by using
fine-grain locks, but at the expense of programmability. The
user must manage the fine-grain locks as trees are traversed,
updated, and potentially rebalanced in a manner that avoids
deadlocks.

6 Evaluation

6.1 Programmability

Quantifying programming effort is a difficult task that re-
quires extensive user studies. Nevertheless, Table 4 shows
the number of extra lines of C code needed to parallelize
each application using fine-grain locks, the low-level TM
interface, and OpenTM constructs as one indication of cod-
ing complexity. For the low-level TM interface, we present
two sets of results: for hardware TM systems where the pro-
grammer must define transaction boundaries, and for soft-
ware TM systems where the programmer must also intro-
duce read/write barriers. Table 4 does not report results for
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Figure 3. Application speedups with coarse-grain locks (CGL), fine-grain locks (FGL), low-level TM inter-
face (LTM), and OpenTM (OTM).

coarse-grain locking code, as they are essentially identical
to those of low-level TM code for a hardware TM system.

Compared to the OpenTM code, FGL requires signifi-
cantly more programming effort, as the user must manually
orchestrate fine-grain accesses to shared states apart from
identifying work-sharing opportunities. For example, the
FGL code for delaunay requires optimistic parallelization
and places the burden on the user to detect and handle con-
flicts between concurrent cavity expansions using fine-grain
locks [17]. Apart from the extra code, the programmer must
make sure that there is no deadlock and no livelock, and that
contention is managed in a reasonable manner. In OpenTM
code, the programmer simply identifies work-sharing and
memory transactions. Concurrency management is the re-
sponsibility of the system, including conflict detection, con-
tention management, and dynamic scheduling.

OpenTM has also advantages over directly using a low-
level TM interface, For software TM systems, use of the
low-level interface requires manual instrumentation and op-
timization of load and store accesses within a transaction.
As it is most obvious in the case of vacation, instrumen-
tation code leads to significant code size increase and can
be tricky to handle. If the programmer introduces redun-
dant barriers, there can be a significant impact on perfor-
mance [2]. If the programmer misses a barrier, the program
behavior can be incorrect or unpredictable depending on the
input dataset and runtime environment. OpenTM eliminates
this tradeoff by automatically introducing and optimizing

barriers for shared variables during compilation. We found
the OpenTM approach advantageous even when targeting
a hardware TM system. While read/write barriers are not
needed in this case, significant code transformation is of-
ten required to distribute loop iterations and implement dy-
namic scheduling (e.g., genome and kmeans). The low-level
code is also difficult to change to make any optimizations
such as changing the chunk size or transaction size.

As is the case with OpenMP, the OpenTM code requires
simple, high-level annotations for parallelism and memory
transactions. It is relatively easy to understand, maintain,
and reuse without requiring expert programmers or error-
prone programming techniques.

6.2 Performance Comparison

Figure 3 presents the speedups for the four code versions
of each application, as we scale the number of processors
from 2 to 16 (higher is better). Speedup is relative to the se-
quential version of each application. The two TM versions
assume hardware TM support. To provide further insights,
Figure 4 presents execution times with 16 processors, nor-
malized to the sequential execution time. Each bar is broken
down into time executing useful instructions, time for cache
misses, idle and synchronization time, transaction commit
time, and time spent on aborted transactions (violation).

OpenTM code compares favorably to lock-based code.
As expected, CGL code does not scale due to the serial-
ization of coarse-grain locks. FGL code exhibits excellent
scaling for three applications. For vacation, FGL is penal-
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Figure 5. Speedups for the histogram with 16 pro-
cessors and static (S) or dynamic (D) scheduling.
C represents the chunk size.

ized by the overhead of acquiring and releasing locks, as
it searches and updates tree structures. The OpenTM code
scales well across all programs. For some applications (e.g.,
delaunay), FGL code is marginally faster than OpenTM
code due to the overhead of aborted transactions when opti-
mistic concurrency fails. On the other hand, OpenTM code
is marginally (e.g., genome) or significantly (e.g., vacation)
faster than FGL code as it avoids the overhead of fine-grain
lock management.

Figure 3 and 4 also capture the performance differences
between OpenTM code and low-level TM code. Since both
versions utilize the hardware support for TM, they perform
similarly for all system scales. Using the simpler, higher-
level syntax of OpenTM does not lead to performance is-
sues. For genome, OpenTM code is faster due to bet-
ter scheduling and contention management using the auto-
mated approach in OpenTM. Similar optimizations are dif-
ficult to introduce and tune in the low-level code.

6.3 Runtime System

Dynamic Scheduling: To demonstrate the usefulness of
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Figure 6. Normalized execution time for the his-
togram with 16 processors using various con-
tention management configurations.

the dynamic scheduling capabilities in the OpenTM run-
time, we use the histogram microbenchmark. As each his-
togram bin is updated after a varying amount of computa-
tional work, there can be a significant imbalance. Figure 5
presents the speedups with up to 16 processors. The static
version uses the static clause to statically schedule loop
iterations in an interleaved fashion with a chunk size of 1.
The dynamic versions use the dynamic clause to dynami-
cally schedule loop iterations with chunk size of 1 to 64 it-
erations. For simplicity, we set the transaction size equal to
the chunk size. The dynamically scheduled executions scale
significantly better than the statically scheduled one, as they
eliminate work imbalance. The differences between the dy-
namic versions are due to the tradeoff between eliminating
the scheduling overhead with smaller chunk size (e.g., fre-
quently accessing the global work queue) and allowing for
some imbalance and more frequent transaction aborts with
a larger chunk size. Note that changing the scheduling pol-
icy, the chunk size, and the transaction size are simple in
OpenTM and do not require global code changes, as is the
case when using lower-level interfaces.

Contention Management: We also use the histogram
microbenchmark to showcase the usefulness of contention
management in OpenTM. Figure 6 presents normalized exe-
cution time with 16 processors and various contention man-
agement configurations. The left-most bar represents the
execution time without any contention management. As
soon as a transaction aborts, there is an immediate retry.
The remaining bars represent execution time with a simple
contention management policy. When a transaction aborts,
it uses linear backoff. If a transaction aborts MR times, it
requests to be executed as a high priority transaction that
wins conflicts with other concurrent transactions. Backoff
reduces the amount of wasted work when multiple threads
operate on the same data. The priority mechanism provides
fairness across threads, as long transactions cannot starve
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Figure 7. Speedups for the histogram OpenTM
code running on the hardware, software, and hy-
brid TM systems.

due to conflicts with smaller transactions [5].

Figure 6 shows that there is a 22% reduction in execu-
tion time using contention management (MR=10). It also
demonstrates the importance of tuning the contention man-
agement policy. With low MR values, the priority mech-
anism is used frequently, causing some performance loss
due to serialization. In the hardware TM system we used,
when a transaction uses the priority mechanism, no other
transaction can commit, even if there is no conflict detected.
When MR is high, there is performance loss, as long trans-
actions are repeated multiple times, causing imbalance in
the system. Overall, contention management can be very
important for robust performance in TM systems. OpenTM
allows users to provide high-level hints in order to guide the
runtime system in addressing contention challenges.

6.4 Code Generation for Software TM Systems

The results thus far are from the execution of OpenTM
code on the hardware TM system. However, our OpenTM
compiler produces code for software and hybrid TM sys-
tems as well. Figure 7 presents the speedups achieved
with the OpenTM code for histogram on all three TM sys-
tems available to us. As expected, the hardware TM sys-
tem is the fastest, as it eliminates all software overhead
for transactional bookkeeping. The hybrid TM system
(SigTM) addresses some of the shortcomings of the soft-
ware system and provides a 2× performance improvement
over software-only TM. While a detailed comparison be-
tween the three TM implementation approaches is beyond
the scope of this paper (see [6] for details), Figure 7 demon-
strates the OpenTM code can be mapped to a variety of TM
systems. With proper compiler optimizations, the OpenTM
environment can provide a scalable and portable way to
build efficient parallel programs.

7 Related Work
High-level parallel programming is a topic with a long

history of research and development efforts. This paper is
most related to the shared-memory approach of OpenMP
and its predecessors [1].

Recently, there has been significant research on high-
level programming environments for transactional memory
or similar parallel systems. Wang et al. proposed exten-
sions to the C programming language and an optimizing C
compiler to support software TM [32]. Our proposal dif-
fers from their work by building on top of OpenMP. In-
stead of focusing only on software TM issues, we propose
an integrated system that includes TM features along with
language and runtime constructs to express and manage
parallelism (e.g., work-sharing and dynamic scheduling).
von Praun et al. proposed the IPOT programming environ-
ment that uses ordered transactions to support speculative
parallelization [31]. OpenTM supports both ordered and
unordered transactions, as we recognize the non-blocking
synchronization is as important as thread-level speculation.
IPOT also lacks full programming constructs (e.g., work-
sharing and advanced TM features) that help programmers
develop and optimize transactional applications.

In parallel with this work, Milovanovic et al. proposed to
extend OpenMP to support TM [23]. Their proposal defines
a transaction construct similar to the one in OpenTM and in-
cludes an implementation based on source-to-source trans-
lation. In addition to the transaction construct, OpenTM
defines constructs for features such as conditional synchro-
nization, nesting, transactional handlers, and contention
management. Moreover, OpenTM has been implemented
using a compiler-based approach. Nevertheless, it is rea-
sonable to merge the two proposals into a unified set of
OpenMP extensions for TM programming.

Several researchers have investigated TM support for
managed languages such as Java [15, 2, 7]. Such environ-
ments use similar constructs for TM programming but ex-
ploit the dynamic code generation, type safety, and object-
oriented features of such languages. The OpenTM infras-
tructure targets unmanaged languages such as C and C++,
focusing on the synergy between high-level OpenMP pro-
gramming and transactional mechanisms for non-blocking
synchronization and speculative parallelization.

8 Conclusions
This paper presented OpenTM, a high-level API for par-

allel programming with transactions. OpenTM extends
the familiar OpenMP environment to support both non-
blocking synchronization and speculative parallelization by
using memory transactions. We also presented a first im-
plementation of OpenTM that is based on the GCC com-
piler. The system can produce code for hardware, software,
and hybrid TM systems and includes a runtime system with



dynamic scheduling and contention management features.
We evaluated the programmability and performance of the
OpenTM environment and showed that it delivers good per-
formance with simple and portable high-level code. Over-
all, OpenTM provides a practical and efficient TM program-
ming environment within the familiar scope of OpenMP.

We are currently improving the compiler and runtime
system for OpenTM to introduce TM-specific optimiza-
tions, improve scheduling for conditional synchronization,
and add further contention management schemes. We are
also investigating further language extensions for features
such as nested parallelism and relaxed transactional seman-
tics for cognitive applications. Finally, we intend to open-
source the OpenTM environment in order to encourage
further application development and experimentation with
transactional memory.
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