A Low Power Front-End for Embedded Processors
Using a Block-Aware Instruction Set

Ahmad Zmily

Computer System Lab
Stanford University

Motivation

e Processor front-end engine
— Performs control flow prediction & instruction fetch

— Sets upper limit for performance
e Cannot execute faster than you can fetch

e Energy and Power efficiency
— Determines battery life-time
— Cost of cooling and packaging

e Front-end consumes significant budget of total power

- Large memory arrays accessed nearly every cycle
e Instruction cache, predictors, BTB

— Arrays are sized to achieve good overall performance

e Reduce the size of the front-end structures?

10/3/2007 Ahmad Zmily

The Problem

e Xscale with small front-end structures
— 16% decrease in total processor power

e The cost for MediaBench programs
- 12% performance loss

@ Base with regular I-Cache and BTB O Base with small I-Cache and BTB
120%

100% -

80% -

60% -
Execution Time Total Power Total Energy

10/3/2007 Ahmad Zmily

BLISS

e Focus of this paper
- Low-power using small front-end structures
— Eliminate performance degradation through optimizations

e A block-aware instruction set architecture (BLISS)
— Decouples control-flow prediction from instruction fetching
— Allows software to help with hardware challenges

e Talk outline
— BLISS Overview
— Front-End Optimizations
— Tools and Methodology
— Evaluation for Embedded Processors
— Conclusions

10/3/2007 Ahmad Zmily

Block-Aware Instruction Set

Text | Block Descriptors
Segment Instructions Instructions
Conventional ISA BLISS ISA

e BLISS = Block-aware Instruction Set

e Explicit basic block descriptors (BBDs)
— Stored separately from instructions in the text segment
— Describe control flow and identify associated instructions

e Execution model
— PC always points to a BBD, not to instructions

10/3/2007 Ahmad Zmily

32-bit Basic Block Descriptor Format

4 8 4 13 3
Type Offset Length Instruction Pointer Hints

e Type: type of terminating control-flow instruction
- Fall-through, jump, jump register, branch, call, return

o Offset: displacement for PC-relative branches and jumps
— Offset to target basic block descriptor

e Length: number of instruction in the basic block
— 0 to 15 instructions

e Instruction pointer: address of the first instruction in the block
— Remaining bits from TLB

e Hints: optional compiler-generated hints

10/3/2007 Ahmad Zmily

BLISS Code Example

numeqz=0;
for (i=0; 1<N; 1i++)
1f (al[1]==0) numeqgz+t+;
else fool();
e Example program in C-source code:

— Counts the number of zeros in array a
— Calls foo() for each non-zero element

10/3/2007 Ahmad Zmily

BLISS Code Example

BBD1: FT , - ,1 addu r4,r0,zx0
Ll: 1w r6,0(rl)
bneqz r6,L2

addui r4,r4,1

BBD2: B F, BBD4, 2

BBD3:J, BBDS5,1

J L3
BBD4: JAL, FOO, 0 L2: jal FOO
L3: addui rl1l,rl1,4
BBD5: B_B, BBD2, 2 bneq rl,r2,L1

e All jump instructions are redundant

e Several branches can be folded in arithmetic instructions
— Branch offset is encoded in descriptors

10/3/2007 Ahmad Zmily

BLISS Decoupled Front-End
Basic Block he

mispredicted branch target Descrlptor caChe 10N
replaces BITB pache
branch type | S
Hybrid BBQ | | © 1Q
Predictor | | I-Cache || § | . Schgdule
I Pipelined | | &
| | @) Execute
&_) BB-Cache <basic block> 5:!3_9 7Y 4
5 ® v
4 BB-cache misses 2 S
8 2 D-Cache
RAS = g
- A
call return target y A A 4) 4
basic block target L2 Cache
BB-cache Entry Format
tag type target length | instr. pointer hints | bimod
(4b) (30b) (4b) (13b) @2b) | (2b)

10/3/2007 Ahmad Zmily

Agenda

==) ¢ Front-End Optimizations
e Tools and Methodology
e Evaluation for Embedded Processors
e Conclusions

10/3/2007 Ahmad Zmily

Instruction Reordering

e Idea: Reorder blocks to improve hit rate and utilization
— Lay out closely executed blocks in chains using profiling
— Adjust instruction pointer in block descriptor

10/3/2007 Ahmad Zmily

Instruction Reordering

e Idea: Reorder blocks to improve hit rate and utilization
— Lay out closely executed blocks in chains using profiling
— Adjust instruction pointer in block descriptor

BBD1:B F ,BBD4, 2 ————» Ll: add r3,r2,r8
bne L2 r3,rl2
BBD2: B _F,BBDy, 3 — 1w r6,128 (r30)
BBD3: J, BBDx, 2 addu r4,0,r6
beq L6 r4, r9
L2: addiu rl7,r0,1

add r3,r2,r8

Instruction Cache

add bne Iw addu

jal addiu add

10/3/2007 Ahmad Zmily

Instruction Prefetching

e BBQ decouples prediction from instruction fetching
— Predictor runs ahead even when IQ full or I-cache miss
— Stalls only on BB-cache miss or BBQ

mispredicted branch target
branch type
Hybrid BBQ |) 1Q Schedule
i §e)
Predictor || I-Cache | S |- 2
¢ Pipelined o
| | &) Execute
| <basic block> 5
Q BB-Cache 2 +)
o ® v
1 @
4 BB-cache misses 2 €
8 g D-Cache
[&]
RAS X s _
call return target A 4 y \ 4) 4
basic block target L2 Cache

10/3/2007 Ahmad Zmily

Instruction Prefetching

e BBQ provides early view into instruction stream
— Guided instruction prefetch
— I-cache misses can be tolerated

mispredicted branch target
branch type
Hybrid BBQ |) 1Q Schedule
i o
Predictor |_Calched H RN 2
Pipeline o}
¢ T | @) Execute
| <basic block> 5
Q BB-Cache 2 +)
g 7 v
4 BB-cache misses 2 €
8 g D-Cache
[&]
RAS = 8 _
call return target A 4 y \ 4) 4
basic block target L2 Cache

10/3/2007 Ahmad Zmily

Instruction Prefetching

e Prefetches initiated for potential misses
— Prop the cache when read port is idle

e Prefetched data in a buffer to avoid cache pollution
— Pushed into the I-cache after first access

mispredicted branch target
branch type
Hybrid BBQ | o IQ
Predictor I-Cach © Schedule
—s A€ 1 g — &
¢ Pipelined o
| | &) Execute
[<basic block> 5
Q BB-Cache 2 +)
o ® v
8 7]
4 BB-cache misses 2 =
8 g D-Cache
[&]
RAS X 8 _
call return target A 4 y \ 4) 4
basic block target L2 Cache

10/3/2007 Ahmad Zmily

Unified Instruction Cache and BTB

e Programs exhibit different behavior
— Susceptible to I-cache organization and size (e.g. rasta)
— Susceptible to BTB organization and size (e.g. adpcm)

e A unified I-cache and BB-cache
— Cache line has either BBDs or regular instructions

— Single port accessed by BBD fetch or instruction fetch
e Instruction fetch returns multiple instructions per cycle

e Difficult with a conventional front-end

— Same PC used to access I-cache & BTB

e More conflict misses

e Need to store extra information to differentiate the two types
— Sharing single port is difficult

e Basic-Block Boundaries are not known before decoding

10/3/2007 Ahmad Zmily

Tagless Instruction Cache

e Idea: exploit tag checks on descriptor accesses
— Improves I-cache access time, energy, and area

10/3/2007 Ahmad Zmily

Tagless Instruction Cache

e Idea: exploit tag checks on descriptor accesses
— Improves I-cache access time, energy, and area

PC Tag Index Offset
|

I-Cache
Way 0 Way 3

Tag Valid Data Tag Valid Data Data

=? > =? :

))
|]
BB _C ache ? BBD Instructions

Matching Way

10/3/2007 Ahmad Zmily

Cache Hints

e General mechanism to attach compiler generated hints
— Basic-Block granularity
— No effect on instruction footprint

4 8 4 13 3
Type Offset Length| Instruction Pointer -

e Cache placement hints
— At what cache level it is profitable to place data
— Heuristic: exclude infrequent and/or high mis-rates blocks

e Cache redistribute hints
— Hints used as part of the cache index
PC

Tag Index Offset

| el

}

10/3/2007 Ahmad Zmily

Agenda

==) ¢ TOOls and Methodology
e Evaluation for Embedded Processors
e Conclusions

10/3/2007 Ahmad Zmily

Evaluation Methodology

e Intel XScale PXA270 processor

— Single issue in-order execution
— Simulated with Simplescalar & Wattch toolsets
- MediaBench benchmark suite

e BLISS code generation
— Static binary translation from MIPS executables
- Front-end optimizations performed during translation

e Instruction Reordering
— Pettis and Hansen block-level positioning

10/3/2007 Ahmad Zmily

Agenda

==) ¢ EFvaluation for Embedded Processors
e Conclusions

10/3/2007 Ahmad Zmily

Performance Analysis

M 1-Prefetching 0 2-Instruction Reordering

M 3-Unified Cache [4-Tagless Cache + Prefetching
B 5a-Exclude Cache Hints O 5b-Redistribute Cache Hints
Optimizations 1+2+3+5b

Normalized IPC

jpeg pegwit crafty vortex Average

— Instruction Prefetching & Reordering = consistent performance
— Unified I-cache and BTB = for programs stressing BTB
- Tagless I-cache = for programs with BB size of 4 instructions

— Cache hints = consistent performance

10/3/2007 Ahmad Zmily

Total Energy Analysis

B | -Prefetching J 2-Instruction Reordering

B 3-Unified Cache [0 4-Tagless Cache + Prefetching
& 5a-Exclude Cache Hints @ 5b-Redistribute Cache Hints
Optimizations 1+2+3+5b

Normalized Total Energy

2721 jpeg pegwit crafty vortex Average

e Tagless I-cache achieves lowest energy
- Except for vortex due to its large BBs

e Combination leads to 19% total energy savings over base

10/3/2007 Ahmad Zmily

BLISS Vs. Filter Cache

O Base with regular I-Cache and BTB O Base with Filter Cache and optimizations

O BLISS with small caches and optimizations

105%

95%

85% -

75% - w w
Execution Time Total Power Total Energy

e Filter cache (tiny cache) proposed by kin et al.
— Using similar optimizations

e BLISS achieves similar power reduction with
- 9% performance improvement
- 19% total energy improvement

10/3/2007 Ahmad Zmily

Conclusions

e BLISS: a block-aware instruction set

— Block descriptors separate from instructions
— Expressive ISA to communicate software info and hints

e Enabled front-end optimizations
— Efficient instruction reordering
— Accurate instruction prefetching
— General mechanism to implement cache hints
— Unified instruction cache and BTB
— Tagless instruction cache

e Result: Low-Power + Performance + Energy
- 9% performance improvement
- 16% total power improvement
- 19% total energy improvement

10/3/2007 Ahmad Zmily

Questions?

Microarchitecture parameters

XScale PXA270

Base BLISS
Fetch Width 1 inst/cycle 1 BB/cycle
Regular BTB 64-entry, 4-way 64-set, 4-way
Small BTB 16-entry, 2-way 16-set, 4-way
Regular I-cache 32 KBytes, 32-way, 32B Blocks, 2-cycle access
Small I-cache 2 KBytes, 2-way, 32B Blocks, 2-cycle access
BBQ - 4 entries
Execution single-issue, in-order with 1 INT & 1 FP unit
Predictor 256-entry bimod with 8 entry RAS
IQ/RUU/LSQ 16/32/32 entries
D-cache 32 KBytes, 4-way, 32B blocks, 1 port, 2-cycle access
L2-cache 128 KBytes, 4-way, 64B blocks, 1 port, 5-cycle access
Main memory 30-cycle access

10/3/2007 Ahmad Zmily

