
A Low Power Front-End for Embedded Processors
Using a Block-Aware Instruction Set

Ahmad ZmilyAhmad Zmily

Computer System Lab
Stanford University

Motivation

• Processor front-end engine

– Performs control flow prediction & instruction fetch

– Sets upper limit for performance

• Cannot execute faster than you can fetch

• Energy and Power efficiency

– Determines battery life-time

– Cost of cooling and packaging

10/3/2007 Ahmad Zmily 2

– Cost of cooling and packaging

• Front-end consumes significant budget of total power

– Large memory arrays accessed nearly every cycle

• Instruction cache, predictors, BTB

– Arrays are sized to achieve good overall performance

• Reduce the size of the front-end structures?

The Problem

• Xscale with small front-end structures
– 16% decrease in total processor power

• The cost for MediaBench programs
– 12% performance loss

Base with regular I-Cache and BTB Base with small I-Cache and BTB

10/3/2007 Ahmad Zmily 3

60%

80%

100%

120%

Execution Time Total Power Total Energy

BLISS

• Focus of this paper
– Low-power using small front-end structures

– Eliminate performance degradation through optimizations

• A block-aware instruction set architecture (BLISS)
– Decouples control-flow prediction from instruction fetching

– Allows software to help with hardware challenges

10/3/2007 Ahmad Zmily 4

• Talk outline
– BLISS Overview

– Front-End Optimizations

– Tools and Methodology

– Evaluation for Embedded Processors

– Conclusions

Block-Aware Instruction Set

• BLISS = Block-aware Instruction Set

Instructions
Instructions

Block Descriptors

Conventional ISA BLISS ISA

Text
Segment

10/3/2007 Ahmad Zmily 5

• Explicit basic block descriptors (BBDs)
– Stored separately from instructions in the text segment

– Describe control flow and identify associated instructions

• Execution model
– PC always points to a BBD, not to instructions

32-bit Basic Block Descriptor Format

• Type: type of terminating control-flow instruction
– Fall-through, jump, jump register, branch, call, return

• Offset: displacement for PC-relative branches and jumps
– Offset to target basic block descriptor

Hints

3

Length

4

Offset

8

Type

4

Instruction Pointer

13

10/3/2007 Ahmad Zmily 6

• Length: number of instruction in the basic block
– 0 to 15 instructions

• Instruction pointer: address of the first instruction in the block
– Remaining bits from TLB

• Hints: optional compiler-generated hints

BLISS Code Example

numeqz=0;

for (i=0; i<N; i++)

if (a[i]==0) numeqz++;

10/3/2007 Ahmad Zmily 7

• Example program in C-source code:
– Counts the number of zeros in array a

– Calls foo() for each non-zero element

else foo();

BLISS Code Example

addu r4,r0,r0

lw r6,0(r1)

bneqz r6,L2

j L3

L1:

addui r4,r4,1

BBD1: FT , --- , 1

BBD2: B_F , BBD4, 2

BBD3: J, BBD5, 1

BBD4: JAL, FOO, 0

10/3/2007 Ahmad Zmily 8

jal FOO

addui r1,r1,4

bneq r1,r2,L1

L2:

L3:

BBD4: JAL, FOO, 0

BBD5: B_B, BBD2, 2

• All jump instructions are redundant

• Several branches can be folded in arithmetic instructions

– Branch offset is encoded in descriptors

BLISS Decoupled Front-End

Schedule

&

Execute

I-Cache

Pipelined

D
e
c
o
d
e

BB-Cache

Hybrid

Predictor

P
C

branch type

<basic block>

mispredicted branch target

m
is

s

BBQ IQ

p
re

fe
tc

h

BB-cache misses

Basic-Block queue

decouples prediction

from instruction cache

Basic Block

Descriptor cache

replaces BTB

10/3/2007 Ahmad Zmily 9

RAS

call return target

basic block target L2 Cache

i-
c
a
c
h
e

m

D-Cache

BB-cache Entry Format

tag length

(4b)

type

(4b)

target

(30b)

hints

(2b)

I-
c
a
c
h
eBB-cache misses

instr. pointer

(13b)

bimod

(2b)

Agenda

• Motivation

• BLISS Overview

• Front-End Optimizations

• Tools and Methodology

• Evaluation for Embedded Processors

10/3/2007 Ahmad Zmily 10

• Conclusions

Instruction Reordering
• Idea: Reorder blocks to improve hit rate and utilization

– Lay out closely executed blocks in chains using profiling

– Adjust instruction pointer in block descriptor

10/3/2007 Ahmad Zmily 11

Instruction Reordering

add r3,r2,r8

addu r4,0,r6

lw r6,128(r30)

BBD1: B_F , BBD4, 2

BBD2: B_F, BBDy, 3

BBD3: J, BBDx, 2

L1:

bne L2 r3,r12

beq L6 r4, r9

• Idea: Reorder blocks to improve hit rate and utilization

– Lay out closely executed blocks in chains using profiling

– Adjust instruction pointer in block descriptor

10/3/2007 Ahmad Zmily 12

addiu r17,r0,1L2:

beq L6 r4, r9

add r3,r2,r8

add bne lw addu

jal addiu add

Instruction Cache

Instruction Prefetching

branch type

mispredicted branch target

• BBQ decouples prediction from instruction fetching
– Predictor runs ahead even when IQ full or I-cache miss

– Stalls only on BB-cache miss or BBQ

10/3/2007 Ahmad Zmily 13

Schedule

&

Execute

I-Cache

Pipelined

D
e
c
o
d
e

BB-Cache

RAS

Hybrid

Predictor

P
C

call return target

basic block target

<basic block>

L2 Cache
i-
c
a
c
h
e

m
is

s

BBQ IQ

D-Cache
I-
c
a
c
h
e

p
re

fe
tc

h
BB-cache misses

Instruction Prefetching

branch type

mispredicted branch target

• BBQ provides early view into instruction stream
– Guided instruction prefetch

– I-cache misses can be tolerated

10/3/2007 Ahmad Zmily 14

Schedule

&

Execute

I-Cache

Pipelined

D
e
c
o
d
e

BB-Cache

RAS

Hybrid

Predictor

P
C

call return target

basic block target

<basic block>

L2 Cache
i-
c
a
c
h
e

m
is

s

BBQ IQ

D-Cache
I-
c
a
c
h
e

p
re

fe
tc

h
BB-cache misses

Instruction Prefetching

branch type

mispredicted branch target

• Prefetches initiated for potential misses
― Prop the cache when read port is idle

• Prefetched data in a buffer to avoid cache pollution
― Pushed into the I-cache after first access

10/3/2007 Ahmad Zmily 15

Schedule

&

Execute

I-Cache

Pipelined

D
e
c
o
d
e

BB-Cache

RAS

Hybrid

Predictor

P
C

call return target

basic block target

<basic block>

L2 Cache
i-
c
a
c
h
e

m
is

s

BBQ IQ

D-Cache
I-
c
a
c
h
e

p
re

fe
tc

h
BB-cache misses

Unified Instruction Cache and BTB

• Programs exhibit different behavior
– Susceptible to I-cache organization and size (e.g. rasta)

– Susceptible to BTB organization and size (e.g. adpcm)

• A unified I-cache and BB-cache
– Cache line has either BBDs or regular instructions

– Single port accessed by BBD fetch or instruction fetch
• Instruction fetch returns multiple instructions per cycle

10/3/2007 Ahmad Zmily 16

• Instruction fetch returns multiple instructions per cycle

• Difficult with a conventional front-end
– Same PC used to access I-cache & BTB

• More conflict misses

• Need to store extra information to differentiate the two types

– Sharing single port is difficult
• Basic-Block Boundaries are not known before decoding

Tagless Instruction Cache
• Idea: exploit tag checks on descriptor accesses

– Improves I-cache access time, energy, and area

10/3/2007 Ahmad Zmily 17

Tagless Instruction Cache
• Idea: exploit tag checks on descriptor accesses

– Improves I-cache access time, energy, and area

10/3/2007 Ahmad Zmily 18

Cache Hints
• General mechanism to attach compiler generated hints

– Basic-Block granularity

– No effect on instruction footprint

• Cache placement hints
– At what cache level it is profitable to place data

Hints

3

Length

4

Offset

8

Type

4

Instruction Pointer

13

10/3/2007 Ahmad Zmily 19

– At what cache level it is profitable to place data

– Heuristic: exclude infrequent and/or high mis-rates blocks

• Cache redistribute hints
– Hints used as part of the cache index

PC HintsTag Index Offset

Agenda

• Motivation

• BLISS Overview

• Front-End Optimizations

• Tools and Methodology

• Evaluation for Embedded Processors

10/3/2007 Ahmad Zmily 20

• Conclusions

Evaluation Methodology

• Intel XScale PXA270 processor
– Single issue in-order execution

– Simulated with Simplescalar & Wattch toolsets

– MediaBench benchmark suite

• BLISS code generation
– Static binary translation from MIPS executables

10/3/2007 Ahmad Zmily 21

– Static binary translation from MIPS executables

– Front-end optimizations performed during translation

• Instruction Reordering
– Pettis and Hansen block-level positioning

Agenda

• Motivation

• BLISS Overview

• Front-End Optimizations

• Tools and Methodology

• Evaluation for Embedded Processors

10/3/2007 Ahmad Zmily 22

• Conclusions

Performance Analysis

1.00

1.05

1.10

1.15

1.20

N
o
rm

a
li
ze
d
 I
P
C

1-Prefetching 2-Instruction Reordering
3-Unified Cache 4-Tagless Cache + Prefetching
5a-Exclude Cache Hints 5b-Redistribute Cache Hints
Optimizations 1+2+3+5b

10/3/2007 Ahmad Zmily 23

– Instruction Prefetching & Reordering � consistent performance

– Unified I-cache and BTB � for programs stressing BTB

– Tagless I-cache � for programs with BB size of 4 instructions

– Cache hints � consistent performance

0.95

1.00

g721 jpeg pegwit crafty vortex Average

N
o
rm

a
li
ze
d
 I
P
C

Total Energy Analysis

0.60

0.70

0.80

0.90

1.00

N
o
rm

a
li
ze
d
 T
o
ta
l
E
n
er
g
y

1-Prefetching 2-Instruction Reordering
3-Unified Cache 4-Tagless Cache + Prefetching
5a-Exclude Cache Hints 5b-Redistribute Cache Hints
Optimizations 1+2+3+5b

10/3/2007 Ahmad Zmily 24

• Tagless I-cache achieves lowest energy
– Except for vortex due to its large BBs

• Combination leads to 19% total energy savings over base

0.60

g721 jpeg pegwit crafty vortex Average

BLISS Vs. Filter Cache

75%

85%

95%

105%

Execution Time Total Power Total Energy

Base with regular I-Cache and BTB Base with Filter Cache and optimizations

BLISS with small caches and optimizations

10/3/2007 Ahmad Zmily 25

• Filter cache (tiny cache) proposed by kin et al.
– Using similar optimizations

• BLISS achieves similar power reduction with
– 9% performance improvement

– 19% total energy improvement

Conclusions

• BLISS: a block-aware instruction set
– Block descriptors separate from instructions

– Expressive ISA to communicate software info and hints

• Enabled front-end optimizations
– Efficient instruction reordering

– Accurate instruction prefetching

– General mechanism to implement cache hints

10/3/2007 Ahmad Zmily 26

– General mechanism to implement cache hints

– Unified instruction cache and BTB

– Tagless instruction cache

• Result: Low-Power + Performance + Energy
– 9% performance improvement

– 16% total power improvement

– 19% total energy improvement

Questions?

10/3/2007 Ahmad Zmily 27

Microarchitecture parameters

XScale PXA270

Base BLISS

Fetch Width 1 inst/cycle 1 BB/cycle

Regular BTB 64-entry, 4-way 64-set, 4-way

Small BTB 16-entry, 2-way 16-set, 4-way

Regular I-cache 32 KBytes, 32-way, 32B Blocks, 2-cycle access

Small I-cache 2 KBytes, 2-way, 32B Blocks, 2-cycle access

10/3/2007 Ahmad Zmily 28

BBQ – 4 entries

Execution single-issue, in-order with 1 INT & 1 FP unit

Predictor 256-entry bimod with 8 entry RAS

IQ/RUU/LSQ 16/32/32 entries

D-cache 32 KBytes, 4-way, 32B blocks, 1 port, 2-cycle access

L2-cache 128 KBytes, 4-way, 64B blocks, 1 port, 5-cycle access

Main memory 30-cycle access

