
Testing Implementations of Transactional Memory

Chaiyasit Manovit†

chaiyasit.manovit@sun.com

Sudheendra Hangal‡

hangal@magiclampsoftware.com

Hassan Chafi?

hchafi@stanford.edu

Austen McDonald?

austenmc@stanford.edu

†Sun Microsystems
Sunnyvale, CA, USA

Christos Kozyrakis?

kozyraki@stanford.edu

‡Magic Lamp Software
Bangalore, India

Kunle Olukotun?

kunle@stanford.edu

?Stanford University
Stanford, CA, USA

ABSTRACT
Transactional memory is an attractive design concept for
scalable multiprocessors because it offers efficient lock-free
synchronization and greatly simplifies parallel software. Given
the subtle issues involved with concurrency and atomicity,
however, it is important that transactional memory systems
be carefully designed and aggressively tested to ensure their
correctness. In this paper, we propose an axiomatic frame-
work to model the formal specification of a realistic transac-
tional memory system which may contain a mix of transac-
tional and non-transactional operations. Using this frame-
work and extensions to analysis algorithms originally devel-
oped for checking traditional memory consistency, we show
that the widely practiced pseudo-random testing methodol-
ogy can be effectively applied to transactional memory sys-
tems. Our testing methodology was successful in finding
previously unknown bugs in the implementation of TCC, a
transactional memory system. We study two flavors of the
underlying analysis algorithm, one incomplete and the other
complete, and show that the complete algorithm while being
theoretically intractable is very efficient in practice.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Shared mem-
ory ; B.6.3 [Logic Design]: Design Aids—Verification; C.0
[General]: Systems specification methodology

General Terms
Algorithms, Verification

Keywords
Transactional memory, Testing, Verification, Specification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’06,September 16–20, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-264-X/06/0009 ...$5.00.

1. INTRODUCTION
The shared memory programming model is very popular

for parallel architectures primarily because it is relatively
easy to use compared to the message passing model for ex-
ample. Proper synchronization between processes, however,
must be employed to ensure correct behavior. Such syn-
chronization is normally used to provide mutual exclusion
between different execution streams via acquisition and re-
lease of locks. Unfortunately, lock-based synchronization
has a number of programmability disadvantages as well as
performance problems in scaling to large systems, even in
the absence of contention.

To solve these problems, Herlihy and Moss proposed an
implementation called transactional memory which can be
used to provide atomicity in the context of a multiproces-
sor [8]. In transactional memory (TM) systems, program-
mers can define a customized block of code called a trans-
action whose operations appear either as if they execute
atomically or never execute. Although direct hardware sup-
port for TM has not yet become widespread in practice,
it has nevertheless been an area of active research in com-
puter architecture. Several other forms of TM have also
been proposed [2, 6, 14, 15, 17, 18], spanning a large design
space [15,19]. In these systems, some combination of hard-
ware and software is responsible for providing transaction
atomicity guarantees to the programmer. Typically, basic
hardware support is provided, and if available hardware re-
sources are exhausted, the system falls back to an alternative
software implementation. Historically, database designers
have studied transactions in great detail and have been con-
cerned about the issues of Atomicity, Consistency, Isolation
and Durability (ACID); these issues, except perhaps dura-
bility, are concerns in TM systems as well. In particular,
the term “atomicity” in TM context usually refers to both
atomicity and isolation.

It is easy to see that in return for a simpler program-
ming model, transactional memory imposes a greater burden
on the system designer. Commercial shared memory multi-
processors today are already very complex machines involv-
ing, for example, hardware multi-threading, several levels of
caches and multiple coherence protocols. TM implementa-
tions may require several other complexities like transaction
caches, speculative writes, atomic reads and writes to hard-
ware state, commit broadcasts, etc. Given the subtleties

involved with preserving ordering and atomicity guarantees
to the programmer, while still allowing a high degree of par-
allelism for good performance, it is clear that aggressive ver-
ification is imperative to ensure that such a system works
reliably. The pseudo-random testing methodology used ex-
tensively by commercial microprocessor and system design
teams [3,10,11,13,21] cannot be extended easily to tests with
unordered transactions or instructions which access shared
memory locations. Such tests can produce multiple out-
comes which are legal under the system specification, and
it is not obvious how legal and illegal results can be dis-
tinguished from each other. Past work with conventional
multiprocessors (without TM) has shown that using short
test programs with aggressive data races can help expose
subtle atomicity and ordering bugs during the pre-silicon or
post-silicon verification phases of commercial systems [7].

Our main contribution in this paper are as follows:

1. We develop a framework of formal axioms for describ-
ing legal operation of a TM system. The system may
include traditional memory consistency semantics for
non-transactional operations.

2. We use this framework to implement a pseudo-random
testing methodology for TM systems and efficient anal-
ysis algorithms based on this framework. Our ap-
proach extends earlier work on testing conventional
multiprocessors to testing a system which allows a mix
of transactions and ordinary instructions. We apply
this methodology to a well-known TM system, namely
TCC (Transactional memory Coherence and Consis-
tency [5, 6]).

3. We report on bugs found using our methodology in the
TCC system design and on trade-offs with respect to
completion and runtime of our analysis algorithms.

In Section 4, we show that the general problem of determin-
ing if the results of a TM program are legal is NP-Complete.
We describe two algorithms for solving the analysis problem:
the first is a polynomial-time algorithm which is sound, but
incomplete, i.e., it may miss some errors, but will never re-
port false errors. We then consider a backtracking-based
algorithm which is both sound and complete. This algo-
rithm has exponential time complexity in theory, but due
to our optimizations, works in very reasonable time in prac-
tice. These algorithms can also be applied almost directly
to the corresponding serializability problems in the context
of database transactions.

In the rest of this paper, Section 2 introduces the frame-
work of formal axioms for transactional memory, includ-
ing memory consistency models for non-transactional opera-
tions. Section 3 provides an overview of our methodology to
test an implementation of transactional memory. Section 4
analyzes the complexity of checking transactional memory
and some flavors of the problem, and then describes our
analysis algorithms, along with examples of the kind of er-
rors it would catch. Section 5 provides results of using our
methodology on the TCC system. Section 6 describes re-
lated work and Section 7 concludes.

2. FORMAL SPECIFICATION OF TRANS-
ACTIONAL MEMORY

We allow a transactional memory program to have both
transactional and non-transactional memory operations; fur-
ther, non-transactional operations are governed by tradi-
tional memory consistency rules, except that they may not
intervene between operations within a transaction in the
global order. This models a realistic multiprocessor system
since it is likely that a system with support for transactions
will still need to support existing non-transactional code for
that instruction set architecture, as long as the memory
locations accessed by transactional and non-transactional
instructions are non-intersecting. Of course, transactional
memory systems which require that all instructions be part
of a transaction are a special case of our formulation. We
also make the assumption that reordering between transac-
tions on the same processor as well as reordering of instruc-
tions within a transaction are not allowed. Only committed
transactions are important for the purposes of checking ar-
chitectural results, since aborted transactions are assumed
to have no programmer-visible effect on memory. We do
not require that nested transactions are flattened. In some
systems, inner transactions may abort without aborting the
outer ones. However, the fact that the outermost transac-
tion successfully commits should still indicate that all in-
structions including the successful inner transactions exe-
cute atomically. Therefore, a nested transaction still ap-
pears to a programmer as a single transaction.

We base our formal specification of transactional memory
systems upon the style of specifying memory consistency
models [20]. Though we use the Total Store Order (TSO)
memory model for illustration in this paper, other models
like SC (Sequential Consistency) and PSO (Partial Store
Order) can be incorporated using a similar framework.

The notation used is as follows. The superscript and the
subscript may be omitted when they are irrelevant or there
is no ambiguity.

Li
a a load from location a by processor i.

Si
a a store to location a by processor i.

V al[Li
a] the value read by Li

a.
V al[Si

a] the value written by Si
a.

Opi
a either a load or a store.

M a memory barrier.
; operator for per-processor program order.
≤ operator for global memory order.
[] a transaction boundary (no nesting).

An order is a relation that is reflexive, anti-symmetric and
transitive. Two kinds of orders are used in the definition
of these axioms: “;” denotes a per-processor program order,
and “≤” denotes a global memory order in which operations
appear to be performed by memory. [Op1; Op2] denotes that
Op1 and Op2 are inside the same transaction, but due to
the transitivity of “;”, they are not necessarily consecutive
operations in program order, that is, there may or may not
be Op3 such that [Op1; Op3; Op2]. Similarly, [Op1] does not
imply that Op1 is the first, the last, or the only operation
in the transaction. Moreover, without explicitly specifying
Op1 inside a transaction boundary, Op1 may refer to either
a non-transactional or transactional operation.

Loads are represented in the global memory order by the
time at which their return value is bound (i.e., cannot be
changed) while stores are represented by the time at which
the store is globally visible to all processors in the system.
The following are the axioms for a TM system employing
the TSO memory model for non-transactional operations:

TransOpOp: Program order within a transaction implies
memory order.

[Op1; Op2] ⇒ Op1 ≤ Op2

TransMembar: Memory barriers are implicit around each
transaction.

Op1; [Op2] ⇒ Op1 ≤ Op2

[Op1]; Op2 ⇒ Op1 ≤ Op2

TransAtomicity: No other memory operations can inter-
vene between two consecutive operations in a transaction.

[Op1; Op2]∧¬[Op1; Op; Op2] ⇒ (Op ≤ Op1)∨(Op2 ≤ Op)

Order: Memory order is a total order over all operations.
∀Opi

a, Opj
b : (Opi

a ≤ Opj
b) ∨ (Opj

b ≤ Opi
a)

Termination: All stores eventually terminate.
Si

a ∧ (Lj
a;)∞ ⇒ ∃Lj

a ∈ (Lj
a;)∞ such that Si

a ≤ Lj
a

Membar: A memory barrier ensures that an operation pre-
ceding it in program order is memory ordered before an op-
eration succeeding it in program order.

Opi
a; M ; Opi

b ⇒ Opi
a ≤ M ≤ Opi

b

LoadOp: The program order from a load to any operation
is maintained in the memory order.

Li
a; Opi

b ⇒ Li
a ≤ Opi

b

StoreStore: The program order among stores is main-
tained in the memory order.

Si
a; Si

b ⇒ Si
a ≤ Si

b

Informally, the LoadOp and StoreStore axioms together
imply that the only kind of reordering allowed between op-
erations on the same processor is for loads to overtake stores,
i.e., a load which succeeds a store in program order may pre-
cede it in global memory order.

Value: The value returned by a load is the value written to
it by the last store in the memory order, amongst the set of
stores preceding it in memory order or program order.

V al[Li
a] = V al[Max≤({Sk

a |Sk
a ≤ Li

a} ∪ {Si
a|Si

a; Li
a})]

This version of the Value axiom permits optimizations
that are allowed by the TSO memory model (a load can,
through bypassing, see the result of a preceding store issued
and buffered by the same processor before that store has
completed in global order); however, this axiom is also cor-
rect for a system using only transactions or for a system
with sequentially consistent semantics for non-transactional
operations.

Traditional memory consistency model usually provides a
swap operation which reads the original content of a memory
location and “immediately” writes a new value to it. Here
we denote a swap operation with [Li

a; Si
a], borrowing the

notation of a transaction boundary.

Atomicity: No operations can intervene between the load
and store components of a swap.

[Li
a; Si

a] ⇒ (Li
a ≤ Si

a) ∧ (∀Opj
b : Opj

b ≤ Li
a ∨ Si

a ≤ Opj
b)

Viewing a swap as a two-instruction transaction, however,
the Atomicity axiom is subsumed by the TransAtomicity
axiom.

All of the above axioms together specify the behavior of a
realistic TM system using TSO semantics for non-
transactional operations. The TransOpOp, TransMembar,
TransAtomicity, Order, Termination and Value axioms com-
pletely specify a transactions-only system (without explicit

memory barriers and inbuilt atomic swap operations) like
TCC [6], while the Order, Termination, Membar, LoadOp,
StoreStore, Value, and Atomicity axioms specify a tradi-
tional multiprocessor system based on the TSO memory
model.

It is important to note that these axioms describe the
behavior of a TM system that appears to programmers, but
do not describe or suggest how it should be implemented.
This concept is similar to the fact that a uniprocessor can
be described simply as being sequential regardless of how
much instruction level parallelism it actually exploits. As an
example in our context, consider the following two weaker
versions of the Atomicity axiom.

Atomicity-A: No stores can intervene between the load
and store parts of a swap.

[Li
a; Si

a] ⇒ (Li
a ≤ Si

a) ∧ (∀Sj
b : Sj

b ≤ Li
a ∨ Si

a ≤ Sj
b)

Atomicity-B: No operations from any processor to the same
location and no operations from the same processor to any
location can intervene between the load and store parts of a
swap.

[Li
a; Si

a] ⇒ (Li
a ≤ Si

a) ∧
(∀Opj

a : Opj
a ≤ Li

a ∨ Si
a ≤ Opj

a) ∧
(∀Opi

b : Opi
b ≤ Li

a ∨ Si
a ≤ Opi

b)

It can be shown that a system implementing either of
these two weaker axioms is still perceived by programmers
as equivalent to that implementing the original version listed
above [9] (the proof is outside the scope of this paper). An-
other example is that accesses to different memory locations
within a transaction may be reordered by an implementa-
tion. As long as the dependence order and transaction se-
mantics are correctly maintained, programmers can choose
to believe that such reordering did not occur. Generally
speaking, for verification purposes, it is more convenient and
simple to consider the strictest version of the axioms. For
deciding on implementation optimizations, system designers
may find the most relaxed form of the axioms more useful.

Note, on the other hand, that these axioms are not a
precise specification of an implementation and it is possible
that the behavior allowed by an implementation is a subset
of that allowed by the axioms.

3. TESTING TRANSACTIONAL MEMORY
Our methodology to test an implementation of transac-

tional memory is based on a straightforward extension of
prior work for checking the memory consistency model of a
multiprocessor [7].

Step 1: We generate a pseudo-random multiprocessor test
program with both transactional and non-transactional op-
erations which access a relatively small number of shared
memory addresses. Transactional and non-transactional op-
erations are controlled to access non-intersecting set of ad-
dresses if so required by the TM system. The test case is
instrumented to observe the architectural results of running
the test, such as the value read by each non-transactional
load instruction or each load instruction in a committed
transaction. On a real system or in a hardware emula-
tion environment, these results can be buffered in proces-
sor registers and only flushed to memory when the register
buffer gets full, in order to minimize test perturbation. In
some simulated systems, the simulation environment has a
means to obtain these architectural results without any in-
strumentation overhead. To minimize overhead, the value

written by every generated store instruction is statically de-
terminable and does not have to be explicitly stored as part
of the results. Various properties of the generated program
such as instruction mix, statistical distribution of transac-
tion length, number of shared memory addresses, sequences
of instruction patterns, etc. can be controlled by the user.
The test generator needs to be aware of the specific types of
instructions of the TM system, e.g., the mechanism to be-
gin, commit, or abort a transaction, but is otherwise fairly
portable, especially when it is targeted to generate programs
in a high-level language such as C. For a transaction which
aborts (either due to an explicit abort instruction in the test,
or due to contention with another transaction), the test case
will retry the transaction. We expect the TM system to al-
ready provide some guarantee of forward progress; therefore,
a test which fails to complete before a timeout is considered
an error. The test can includes all operations (including
non-transactional operations) supported by the instruction
set. For example, for a typical instruction set architecture, it
would include different-sized loads and stores, compare and
swap, prefetches, flushes, conditional branches, non-faulting
loads, inter-processor interrupts, non-cacheable operations,
etc.

In order to allow us to map each read value observed in
the program back to the store which created it, we ensure
that each store value used in the program is unique. This
is an important requirement for the analysis algorithm, as
explained in the next section.

Step 2: The test program from step 1 is assembled or
compiled and run on a test environment like an actual multi-
processor system or a simulation model at the architectural,
RTL (Register Transfer Level) or gate-level.

Step 3: The architectural results of the test program are
fed into an analysis algorithm. The analysis algorithm is
oblivious to the specifics of the TM system, as long as it has a
description of the dynamic order of all operations (including
transaction boundaries) that were committed and the values
read/written by all loads and stores. No other visibility into
the test execution is assumed, nor any specifics about how
the TM system is implemented, for example, in hardware,
software or a combination of the two. However, additional
ordering information can be used if it is available. At the end
of analysis, a pass or fail is signaled. Since it is possible that
different runs of the same test program may obtain different
results in the presence of external perturbation, the analysis
result refers to the correctness of only that particular run of
the test program.

To prepare for analysis, the dynamic sequence of program
instructions on each processor is converted to a sequence
of nodes in a graph. Transactions which aborted do not
appear in this graph since they should have no programmer-
visible effect. Nodes representing instructions which do not
have programmer visible effect on memory such as prefetches
and flushes are converted to no-ops. Compare and swap
instructions are resolved into either a swap or an ordinary
load. Nodes representing instructions which cover multiple
shared words of interest are expanded, so that all loads,
stores and swaps in the analysis graph are of a uniform size.

Finally, edges are added in this graph to represent con-
straints on the memory order ≤ according to the analysis
algorithm described in the next section. Note that ≤ re-
flects the perceived order rather than the order in terms of
actual time.

4. RESULTS ANALYSIS
Analysis algorithms try to answer the following question:

Given a multi-threaded program with transactions and non-
transactional operations, a program order “;” for each thread,
and the results (load and store values) for a run of this
program, does there exist a valid memory order “≤” under
which all axioms of the underlying memory system are sat-
isfied? Specifically, we consider the version of the problem
where the read-mapping is well-defined, i.e., the value read
by every load can be mapped to the store which created that
value. Before describing the analysis algorithm, we discuss
the theoretical complexity of the analysis problem.

4.1 Analysis Complexity
We note here that the definitions of the Sequential Con-

sistency (SC) memory model and the TSO memory model
are almost identical except that program order “;” directly
implies global memory order “≤” in SC while S; L does not
imply S ≤ L in TSO.

Checking that an execution of a test program complies to
the specification of the Sequential Consistency (SC) mem-
ory model is known to be an NP-Complete problem for an
unlimited number of processors. This is termed the VSC
(Verifying Sequential Consistency) problem by Gibbons and
Korach [4]. The problem remains NP-Complete even if the
mapping function between each load and the store which
wrote the value it read is known. This is called the VSC-
read problem. Similarly the VTSO and VTSO-read problem
are also NP-Complete [7].

Following similar terminology, we call our problem the
VTM-read problem (Verifying Transactional Memory with
read-mapping), with TSO semantics for non-transactional
operations. The fact that every store writes a unique value
in our problem makes it obvious which store created the
value read by each load. Therefore, the read-mapping infor-
mation is readily available.

Theorem 1. VTM-read is NP-Complete, assuming an
unlimited number of processors.

Proof (Outline).

1. VTM-read is in NP. Given a schedule of memory op-
erations, it can be verified against each VTM axiom in
polynomial time.

2. The VSC-read problem is reducible to the VTM-read
problem because every instance of the VSC-read prob-
lem can be mapped to an instance of the VTM-read
problem by embedding each instruction in a separate
transaction. The TransMembar axiom ensures that
instructions ordered in “;” remain ordered in “≤”.

Gibbons and Korach further define the VSC-conflict prob-
lem as VSC-read when write-order per location is known.
They show that VSC-conflict can be solved in polynomial
time [4]. Similarly for the corresponding VTM-conflict prob-
lem, there is a simple polynomial time algorithm (the proof
is outside the scope of this paper). One way to generate test
programs that reduce results analysis to the VTM-conflict
problem is to ensure that each store instruction is embed-
ded in a transaction and is preceded by a load instruction to
the same address in the same transaction (i.e., there are no

“blind stores”.) This effectively allows us to derive a per-
location conflict order and the resulting VTM-conflict prob-
lem can be solved in polynomial time. However, the restric-
tions imposed upon tests which can be generated are signif-
icant and therefore this version of the problem is marginally
useful for purposes of verification.

4.2 Analysis Algorithms
Our analysis algorithms try to infer as many orders as pos-

sible between memory operations that must hold to satisfy
program order, and to justify the observed behavior.

A directed graph is used as the data structure for the anal-
ysis. Nodes in this graph represent operations and edges
represent ordering relations in the global memory order ≤.
Since ≤ is transitive, any path in the graph implies the ex-
istence of the ≤ relation between the source and destination
of the path. A violation of any axioms in Section 2 (ex-
cluding the Termination axiom) will cause a conflict in the
ordering of two or more operations and manifest as a cycle
in the graph.

A global source node at the root of the graph acts like a set
of stores writing initial values to all shared addresses. It is
ordered before all other nodes in the graph. TransAtomicity
Enforcement is a key aspect of our analysis algorithm with
respect to transaction atomicity: incoming edges incident to
any node in a transaction must point to its first node; out-
going edges from any node in a transaction must similarly
leave from its last node. This guarantees that the Trans-
Atomicity axiom is satisfied by the relations embodied in
the graph at all times.

The analysis algorithm starts by mapping every load value
to the store which wrote that value. This mapping is well-
defined because every store in our tests writes a unique
value. A load reading a value never written to that ad-
dress causes an obvious failure at the outset. After this
step, the algorithm adds any edges implied by knowledge
of global memory ordering obtained through additional ob-
servability available in the system, if any. For example in a
hybrid hardware-software TM system, software may be able
to record some global memory ordering information. Next,
the analysis algorithm adds edges by applying the following
rules.

Baseline Algorithm
Static Edges: In the first step, program order edges are

added to the graph according to the following 6 rules, which
depend only on the test program and are independent of
run results. The first three rules are related to transactions.
The next three capture TSO ordering requirements for non-
transactional operations.

T1: [Op1; Op2] ⇒ Op1 ≤ Op2 (TransOpOp axiom)
T2: Op1; [Op2] ⇒ Op1 ≤ Op2 (TransMembar axiom)
T3: [Op2]; Op3 ⇒ Op2 ≤ Op3 (TransMembar axiom)
R1: L; Op ⇒ L ≤ Op (LoadOp axiom)
R2: S; S′ ⇒ S ≤ S′ (StoreStore axiom)
R3: S; M ; L ⇒ S ≤ L (Membar axiom)
For the remaining rules, let S, S′, and L be accesses to

the same address and V al[L] = V al[S].
Observed Edges: For all loads, the edges specified by the

following two rules are added based on the load results.
These edges can be added once load values are known.

R4: ¬S; L ⇒ S ≤ L (Value axiom)
This follows because S must be in one of the two store sets
in the Value axiom for L.

R5: S′; L ⇒ S′ ≤ S (Value axiom)
This must be true because if both S ≤ S′ and S′; L are true,
V al[L] cannot equal V al[S] by the Value axiom.

Inferred edges: In the last step, we add more edges based
on two rules which follow from the Value axiom:

R6: S′ ≤ L ⇒ S′ ≤ S (Value axiom)
Assuming otherwise, S ≤ S′ (and given S′ ≤ L) will lead to
a contradiction and V al[L] cannot equal V al[S].

R7: S ≤ S′ ⇒ L ≤ S′ (Value axiom)
Assuming otherwise, S′ ≤ L (and given S ≤ S′) will lead to
a contradiction and V al[L] cannot equal V al[S].

For rule R6, the set of all possible S′ such that S′ ≤ L can
be found by traversing the graph backward from L to find
its predecessors known at that time. Similarly for rule R7,
traversing the graph forward from S will reach all S′ such
that S ≤ S′. Note that the set of nodes traversed due to
rules R6 and R7 depend on the edges already existing in the
graph. If a new edge is added to the graph, applying these
rules again may create further inferred edges. Therefore, we
iterate over the application of rules R6 and R7 to the graph,
till a fixed point is reached and no further edges are added in
a complete iteration. The graph is then checked for cycles.
If a cycle exists, it implies that the relations derived do not
constitute a valid order because the anti-symmetry property
of ≤ would be violated.

Figure 1 is an example of producer-consumer synchroniza-
tion with a single producer and a single consumer. This syn-
chronization can be achieved without locks: the producer
checks the flag, produces data, and set the flag; the con-
sumer checks the flag, consumes the data and reset the flag.
However, this lock-free mechanism relies on the premise that
accesses to data and flag shall not be reordered, either by
hardware or software (e.g., due to a programmer mistake).
With transactional memory, the ordering constraint in soft-
ware can be overlooked by embedding the critical sections
in transactions. This makes programming TM systems less
error-prone, and hence, attractive. The notation for this
and the rest of examples is as follows: S[a]#1 refers to a
store which writes value 1 to location a, while L[b]=2 refers
to a load from location b which returns value 2. Figure 1(a)
shows the code where data (location d) and flag (location
f) are accessed in the correct order. An example of possi-
ble outcomes is annotated with the code sequence. In Fig-
ure 1(b), the consumer accesses the data and flag in the
opposite order. Under the TSO model, this code may pro-
duce undesirable results, yet valid, such as that exhibited in
the annotation. Embedding this same code in transactions,
however, precludes such undesirable results. Figure 1(c)
shows why the result shown in Figure 1(b) is not valid un-
der the TM model: edges E1, E2, and E3 are derived via
rule R4, E3’ is created by TransAtomicity enforcement on
the dashed edge E3, and the cycle is formed by E2 and E3’
(shown in bold).

Time Complexity: The above algorithm runs in polyno-
mial time. Let the number of memory operations in the
graph be n. We can consider each transaction a single node
because it has a single set of incoming and outgoing edges.
But overall, the number of nodes remains O(n). Then the
number of iterations is bounded by the number of all possi-
ble edges, O(n2) since each iteration adds at least one edge.
The time complexity of each iteration is at most O(n3) since
there are O(n) Store-Load pairs, and we need to spend at
most O(n2) time to traverse each edge in the whole graph

(a) Correct code for TSO (b) Flawed consumer P2 –
undesirable result but TSO
compliant

E1

E2

E3

E3’

P2

Transaction

L[d]=12

L[f]#1

S[f]#2

Transaction

Transaction

L[f]=0

S[d]#11

S[f]#1

L[f]=2

S[d]#12

S[f]#3

P1

(c) Flawed consumer P2 – undesirable result not TM compliant

Figure 1: Producer-consumer example (using in-
creasing flag values to make store values unique).

for each pair.
Optimizations: While we have described all the inference

rules used by the algorithm at a high level above, in prac-
tice, we perform several optimizations using vector clocks
similar to Manovit and Hangal [12] to apply the rules effi-
ciently and prune graph traversal when it is known that no
new constraints can be inferred. We omit discussion about
these optimizations since they are described elsewhere and
orthogonal to the discussions in this paper.

Incompleteness: Although this polynomial-time algorithm
reports no false alarms because all rules are sound, it may
miss real bugs due to the fact that, in the absence of cycles
in the graph, it creates a global order relation which is con-
sistent with all the axioms except the Order axiom. As a re-
sult, some operations may be left unordered potentially hid-
ing some unresolvable ordering conflicts which should have
been flagged as a violation of the Order axiom. This incom-
plete algorithm therefore runs the risk of letting erroneous
results go undetected.

Complete Algorithm
To address this incompleteness, we post-process the final

graph attained by the baseline algorithm in order to dis-

cover a valid total operation order (TOO) which satisfies all
axioms. We perform topological sort and arbitrarily assign
order to operations that are left unordered by the baseline
algorithm. Every time we make such an arbitrary order-
ing choice, we repeat inference of further constraints due to
rules R6 and R7 until a new fixed point is reached. It is
possible that the topological sort may get stuck due to an
incorrect choice made earlier. When this happens, we back-
track to the last choice point and make a different choice; our
data structures are carefully maintained such that we can
undo the effect of the choice as well as further constraints
which were inferred based upon that choice. It has been
shown in prior work with traditional memory consistency
models that performing constraint inference while searching
for the global memory order is necessary for achieving good
performance; without this step, the amount of backtracking
required is enormous and complete analysis is impractical.
Note that TransAtomicity Enforcement always applies dur-
ing this post processing phase and the algorithms virtually
views a whole transaction as a single node. A transaction
can be selected for retirement in global memory order only
if all operations within it are ready for retirement; similarly,
when undoing the effect of an arbitrarily picked transaction,
we undo the effect of all operations in that transaction.

5. RESULTS
In this section, we report our experiences of employing

the presented methodology on a transactional memory sys-
tem, TCC [6]. Section 5.1 briefly introduces TCC and lists
specific details of our experiments. Section 5.2 illustrates
samples of bugs found by our methodology. Section 5.3 re-
ports characteristics of our analysis algorithms when applied
to TCC.

5.1 Experiments on TCC
TCC is a well-known research prototype of a transac-

tional memory system [6]. In TCC, all operations are always
contained within transactions. TCC is currently available
in the form of a detailed software architectural simulator,
which is a C++ application designed to be linked directly
with the simulated program. Its software libraries provide
API interfaces to handle transactions for programs devel-
oped in C/C++. We have an ongoing effort in applying our
methodology to verify the correctness of TCC implementa-
tions. Since TCC programs consist only of transactions, we
never utilize the mix of transactional and non-transactional
operations that our analysis is capable of handling in these
experiments.

For TCC, our test generator generates a C program based
on various generator controls like instruction distributions
and transaction size. The C program contains memory op-
erations in multiple threads to shared addresses, including
transaction boundaries and instrumentation to observe the
result of every load instruction in the program. This pro-
gram is compiled with a C compiler and linked with the
TCC libraries and the TCC simulator. The resulting binary
is executed and it generates a results file that can be directly
used by the analysis phase.

For our experiments, we had access to 2 models of TCC
which we will refer to as TCC-A and TCC-B. TCC-A was
the first TCC model and was fairly mature and stable. TCC-
B extends TCC-A in several ways making it a more scalable
and aggressive design. At the time of our experiments, TCC-

B was running many programs correctly, but was still in a
relatively early phase of development.

We performed 2 kinds of experiments with TCC: the first
one was aimed at finding bugs in TCC designs, and the
second one characterized various features of our analysis al-
gorithms when applied to TCC.

Bug hunting: In these experiments, we varied a number
of parameters of our test generation such as the number of
processors, sizes of transactions, etc. We also varied the
sizes and configuration of the simulated memory hierarchy.
The goal was to create extremely stressful test-cases for the
system and exercise corner cases in the design. Finally, the
result of each test program was analyzed using the back-
tracking algorithm described in the previous section. We
ran tests in this mode on both TCC-A and TCC-B models.

Characterization of analysis algorithms: In this set of ex-
periments we used only the TCC-A model, fixed the sizes
and configuration of the memory hierarchy to a reasonable
setting, and varied only the number of operations in each
test program (n), the number of processors (p), the number
of shared memory location (a), and the size of each trans-
action in terms of the number of memory operations (s).

5.2 Bugs found in TCC
Despite the fact that we started our verification effort

on the TCC-A model after it was stable and was already
running test programs and benchmarks, our methodology
helped uncover a previously unknown corner case bug in the
software libraries. The effect of this bug was that 2 loads
to the same memory location inside the same transaction
returned different values in some cases, as demonstrated in
Figure 2(a). This discrepancy of the load values means that
the transaction was not atomic because it allowed another
store to complete in between and modify the location. De-
tecting this as a cycle in the analysis graph requires the
following steps:

• Applying rule R1 and T2 creates edges E1 and E2
which maintain the program order on P1.

• Applying rule R4 gives edge E3 that orders S[A]#2
before L[A]=2, which turns into E3’ due to the Trans-
Atomicity enforcement.

• Given S[A]#1 ≤ L[A]=2, edge E4 - S[A]#1 ≤ S[A]#2
is inferred by rule R6.

• Finally, given S[A]#1 ≤ S[A]#2, L[A]=1 must be or-
dered before S[A]#2 according to rule R7. This adds
edge E5 which forms a cycle with E3’.

The root cause of this bug was that the compiler inappro-
priately optimized out the first load in the second transac-
tion and, instead, directly took the value from the register
that still carried the written value of the previous store,
which belonged to the first transaction. This was because it
could statically determine that both operations access the
same address and it was not aware that the memory content
could be altered. Had there been no store to that address
performed by a committed transaction on another proces-
sor, it would be correct to perform the optimization. This
bug was fixed by having TCC libraries correctly inform the
compiler that memory content may be altered immediately
after a transaction has committed.

E4 - rule R6

X2

X3

E2 - rule T2

E1 - rule R1

P1

P2

S[A]#1

L[A]=1

L[A]=2

S[A]#2

E5 - rule R7

E3’

E3 - rule R4

X1

(a) Bug in TCC-A

E1 - rule R2

E5 - rule R4

E2 - rule T2

E4 - rule R4

E6
- r

ule
 R

7

E6’

E3 - rule R1

P1

P2
S[A]#1

S[B]#12

S[A]#2

L[B]=12

L[A]=1

X2

X3

X1

(b) Bug in TCC-B

Figure 2: Examples of TCC bugs found by TSOtool.
X1:[] denotes a transaction, X1.

This example illustrates that since our methodology per-
forms end-to-end checking from the point of view of pro-
grammer visible results, it can uncover not only problems in
hardware design, but also problems in software components
which participate in providing transaction guarantees.

For the TCC-B model, which was newly developed and
less mature, our methodology detected illegal program re-
sults (cycles in the graph) in about 9% of test-cases run.
One common manifestation was similar to that previously
described where 2 loads to the same address disagree on
the value except that the first load may or may not see the
value carried over from some previous transaction (this is a
different problem from the one uncovered in TCC-A). An-
other bug manifestation, depicted in Figure 2(b), involved
2 memory locations and at least 2 threads. Rule R4 gives
S[B]#12 ≤ L[B]=12, which in turn order X2 ≤ X3 due to
TransAtomicity Enforcement. Applying rule R7 to S[A]#1
and S[A]#2, we have L[A]=1 ≤ S[A]#2, and hence, X3 ≤ X2,
which conflicts with the order previously inferred. This and
other failure signatures are currently being investigated by
the developers of the TCC-B model.

Note that without the presence of transaction semantics,
all bug manifestations shown in this section would not be
considered as memory inconsistencies.

5.3 Characteristics of analysis algorithms and
test programs

In this section, we discuss the characteristics of our anal-
ysis algorithms when applied to the TCC-A model. We
studied the analysis performance while varying the number
of nodes (n), the number of processors (p), the number of
addresses (a), and the size of transactions in terms of the
number of memory operations (s). Figure 3 summarize the
effect of these variables. Figure 3(a) plots the absolute anal-
ysis time of the backtracking algorithm, which is within 200
seconds for all our test cases with p=8-64, n=128K-512K,
a=4-256, and s=4-16. The performance difference between
the baseline and the backtracking algorithm, shown as the
slowdown ratio, is plotted in Figure 3(b). In all cases, it

takes at most twice the amount of time spent in the base-
line algorithm to achieve a complete analysis using the back-
tracking algorithm. These graphs are plotted using the same
log scale on the Y-axis to illustrate that the slowdown due
to the addition of backtracking is not a major contribution
to the increasing analysis time when we vary different pa-
rameters, i.e., the slopes of the graphs in Figure 3(b) are
significantly lower than those in Figure 3(a).

The total analysis time grows with all the parameters ex-
cept for the transaction size where the analysis time actually
shrinks, with 2 probable reasons. First, the effective number
of nodes is smaller with transactions as each transaction is
effectively a single node. Second, the effective number of
addresses is also smaller because a single transaction may
access several addresses. (For simplicity, it is not too inac-
curate to estimate that the effective number of addresses is
a / min(a, s).) This also helps explain why analyzing TCC
results takes less time than analyzing TSO results for the
same problem sizes in general.

We also studied at a high level how aggressively the TCC
design was exercised while executing all the generated tests.
For example, we measured the number of violations (which
cause a transaction to be rolled back and retried) per trans-
action committed. In our experiments, this number was in
the broad range of 0.33 to 33.84 (although the lower end is
not a very small number, indicating that our tests may be
biased too much toward sharing; increasing the number of
shared addresses could help broaden the range). We also use
the valid TOO obtained by the backtracking algorithm to
approximate the degree of execution concurrency between
test threads by measuring the extent of interleaving of oper-
ations from different threads relative to the total size of the
program. Based on such a metric, we see a large range of
achieved concurrency, almost covering both extremes (i.e.,
maximum concurrency and minimal concurrency). We often
use such data as feedback in further tuning test parameters
with the overall goal of increasing test coverage.

Although the complete algorithm has so far not found a
problem missed by the incomplete one in our experiments,
it increases our confidence in the results. And if it ever
finds a problem, it would be of an extremely subtle nature.
Therefore, we consider the complete algorithm important to
run.

6. RELATED WORK
To our knowledge, this is the first paper to outline a

practical methodology to test implementations of transac-
tional memory. Gibbons and Korach established theoreti-
cal bounds on the complexity of verifying sequential consis-
tency under various conditions [4]. Similar problems arise
in the context of database transactions, where a schedule
is given and the decision problem is whether it is view or
conflict equivalent to some serial schedule. The fact that
the VSC-read and VTM-read problems are NP-Complete
and the VSC-conflict and VTM-conflict problems are in P
is analogous to the fact that the View Serializability prob-
lem is NP-Complete and the Conflict Serializability problem
is in P [4,16].

Xu et al. propose a technique that essentially captures the
programmer’s intent and infers critical sections, i.e., trans-
action boundaries, in multithreaded programs from their
dynamic execution paths, and use the inferred information
to detect serializability violation during the execution [22].

(a) Deriv+Back. (b) Slowdown ratio.

Figure 3: Analysis time of Deriv+Back and its slow-
down ratio. The graphs for n, p, and a are plotted
with s=4 and averaging out the parameter that is
not shown in each respective graph. The graph for
s are plotted with a=64 and averaging out n.

Also, Adve and Hill study data race detection [1] which is a
similar problem to detecting violations of transactions seri-
alizability. However, both these works assume that the order
of synchronization events or conflicting operations is known
or observed, while our work does not need to know trans-
action ordering. Furthermore, the consistency of the values
read in critical sections is typically not checked in data race
detection.

Conventional approaches for verifying atomicity and or-
dering are based either on test-cases limited to specific id-
ioms whose results can be reasoned about in advance, or on
extraction of global ordering information using extra observ-
ability in the system. Transactional memory renders these
approaches even less effective. Extracting global order at the

hardware level tends to be complex, especially in large sys-
tems which use aggressive optimizations to maintain paral-
lelism while preserving the illusion of transaction atomicity.
Global order extraction is usually tied intimately to design
details and is not easily portable across different processors
and systems. Since it usually depends on intimate knowl-
edge of internals of the system, it may miss fundamental
architectural errors designed into the system. It also cannot
be used on systems where such observability is not available.

7. CONCLUSIONS AND FUTURE WORK
While transactional memory simplifies parallel program-

ming, it poses significant challenges to system designers.
Since transactional memory systems invariably involve com-
plex designs, they need aggressive and creative verification
methodologies. Errors in TM system designs can result in
extremely subtle and hard-to-detect bugs and will under-
mine the reliability of a system. We have shown that a
formal axiomatic framework can capture the behavior of a
system supporting both transactional and non-transactional
operations, and can be used as the basis for an important
pseudo-random testing methodology for transactional mem-
ory systems. Our approach has been validated on the TCC
research prototype.

8. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for help-

ful comments and suggestions for improving the paper. Dis-
cussions with Mark Moir, Paul Loewenstein, and Robert
Cypher related to transactional memory were also enlight-
ening.

9. REFERENCES
[1] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B.

Netzer. Detecting data races on weak memory
systems. In ISCA’91: Proceedings of the 18th Annual
International Symposium on Computer Architecture,
pages 234–243. May 1991.

[2] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, et al.
Unbounded transactional memory. In HPCA’05:
Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, pages
316–327. Feb 2005.

[3] B. Bentley and R. Gray. Validating the Intel Pentium
4 processor. Intel Technology Journal, (Q1):8, Feb.
2001.

[4] P. B. Gibbons and E. Korach. Testing shared
memories. SIAM Journal on Computing,
26(4):1208–1244, 1997.

[5] L. Hammond, B. D. Carlstrom, V. Wong, et al.
Programming with transactional coherence and
consistency (TCC). In ASPLOS’04: Proceedings of the
11th International Conference on Architectural
Support for Programming Languages and Operating
Systems, Oct. 2004.

[6] L. Hammond, V. Wong, M. Chen, et al. Transactional
memory coherence and consistency. In ISCA’04:
Proceedings of the 31st Annual International
Symposium on Computer Architecture.

[7] S. Hangal, D. Vahia, C. Manovit, et al. TSOtool: A
program for verifying memory systems using the

memory consistency model. In ISCA’04: Proceedings
of the 31st Annual International Symposium on
Computer Architecture, page 114, 2004.

[8] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
ISCA’93: Proceedings of the 20th Annual
International Symposium on Computer Architecture,
pages 289–300. May 1993.

[9] R. Hosabettu. SPARC V9 atomic transaction. Sun
Microsystems, Feb. 2003.

[10] J. M. Ludden, W. Roesner, G. M. Heiling, J. R.
Reysa, J. R. Jackson, et al. Functional verification of
the POWER4 microprocessor and POWER4
multiprocessor system. IBM Journal of Research and
Development, 46(1):53–76, 2002.

[11] S. T. Mangelsdorf, R. P. Gratias, R. M. Blumberg,
and R. Bhatia. Functional verification of the HP PA
8000 processor. Hewlett-Packard Journal, Aug. 1997.

[12] C. Manovit and S. Hangal. Efficient algorithms for
verifying memory consistency. In SPAA’05:
Proceedings of the 17th Annual ACM Symposium on
Parallelism in Algorithms and Architectures, pages
245–252, 2005.

[13] S. Mehta, S. Ahmed, S. Al-Ashari, et al. Verification of
the UltraSPARC microprocessor. In COMPCON’95:
Proceedings of the 40th IEEE Computer Society
International Conference, page 452, 1995.

[14] M. Moir. Hybrid transactional memory, Jul 2005.
Unpublished manuscript.

[15] K. E. Moore, J. Bobba, M. J. Moravan, et al. LogTM:
Log-based transactional memory. In HPCA’06:
Proceedings of the 12th International Symposium on
High-Performance Computer Architecture, 2006.

[16] C. H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM, 26(4):631–653,
1979.

[17] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing
transactional memory. In ISCA’05: Proceedings of the
32nd Annual International Symposium on Computer
Architecture.

[18] N. Shavit and D. Touitou. Software transactional
memory. In PODC’95: Proceedings of the 14th ACM
Symposium on Principles of Distributed Computing,
pages 204–213. Aug 1995.

[19] A. Shriraman, V. Marathe, S. Dwarkadas, et al.
Hardware acceleration of software transactional
memory. Technical Report UR CSD;TR 887, Dept. of
Computer Science, University of Rochester, Dec. 2005.

[20] P. S. Sindhu, J.-M. Frailong, and M. Cekleov. Formal
specification of memory models. Technical Report
CSL-91-11, Xerox Palo Alto Research Center, Dec.
1991.

[21] S. A. Taylor, M. Quinn, D. Brown, et al. Functional
verification of a multiple-issue, out-of-order,
superscalar Alpha processor – the DEC Alpha 21264
microprocessor. In DAC’98: Proceedings of the 35th
Design Automation Conference, pages 638–643, 1998.

[22] M. Xu, R. Bod́ık, and M. D. Hill. A serializability
violation detector for shared-memory server programs.
In PLDI’05: Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 1–14, 2005.

