
Vector Lane Threading

S. Rivoire, R. Schultz, T. Okuda, C. Kozyrakis

Computer Systems Laboratory

Stanford University

2ICPP, August 2006

Motivation

� Vector processors excel at data-level parallelism (DLP)

�What happens to program phases with little or no DLP?

� Vector Lane Threading (VLT)

• Leverage idle DLP resources to exploit thread-level parallelism (TLP)

• 1.4-2.3x speedup on already optimized code

• Small increase in system cost

� VLT increases the applicability of vector processors

• Efficient for both regular & irregular parallelism

3ICPP, August 2006

Outline

�Motivation

� Vector processor background

• Generic vector microarchitecture

• Vector processors and DLP

� Vector lane threading (VLT)

� VLT evaluation

� Conclusions

4ICPP, August 2006

Vector Microarchitecture Overview

Scalar Unit

Vector Unit

L2 Cache / Memory Interface

5ICPP, August 2006

Vector Microarchitecture Overview

Vector Unit

L2 Cache / Memory Interface

Fetch

Scalar Processor

D$ ROB

6ICPP, August 2006

…

VRF VRF

Vector Microarchitecture Overview

Scalar Unit

L2 Cache / Memory Interface

Fetch

ROB

Vector Control Logic

LSU LSUFUs FUs

7ICPP, August 2006

Vector Efficiency with High DLP

� Best case for vector processors: long vectors & regular memory patterns

� Lanes execute data-parallel operations very efficiently

• Low instruction issue rate, simple control, compact code, power efficiency

� Simple model for scalable performance

• Current vector processors have 4 to 16 lanes

for i = 1 to N
for j = 1 to N
for k = 1 to N
C[i,j] = C[i,j]+A[i,k]*C[k,j]

0

1

2

3

4

5

6

7

8

1 2 4 8

Vector Lanes

S
p
e
e
d
u
p

mxm sage

8ICPP, August 2006

Vector Efficiency with Low DLP

� Low DLP ⇒ underutilized lanes & memory ports

• Short vectors

• No vectors

• Vector length vs. stride in nested loops

� Can we improve efficiency for low-DLP cases?

0

1

2

3

4

5

6

7

8

1 2 4 8

Vector Lanes

S
p
e
e
d
u
p

mpenc

trfd

multprec

bt

radix

ocean

barnes

9ICPP, August 2006

Outline

�Motivation

� Vector processor background

� Vector lane threading (VLT)

• Overview

• Possible configurations

• Implementation

� VLT Evaluation

� Conclusions

10ICPP, August 2006

VLT Basics

� Idea: use idle lanes to exploit thread-level parallelism (TLP)

� Sources of TLP

• Outer loops in loop nests

• Non-vectorizable loops

• Task-level parallelism

� VLT benefits

• Does not harm high-DLP performance

• Higher utilization for DLP resources

• Vector unit can be shared between multiple threads

� From SMT or CMP scalar processors

11ICPP, August 2006

VLT Configurations: Single Vector Thread

� Original configuration for long vector lengths (high DLP)

• 1 thread running vector instructions on 8 lanes

L0 L1 L2 L3 L4 L5 L6 L7

Vector Lanes

12ICPP, August 2006

VLT Configurations: 2 Vector Threads

T0,
L0

T0,
L1

Vector Lanes

T0,
L2

T0,
L3

T1,
L0

T1,
L1

T1,
L2

T1,
L3

� Medium vector length configuration

• Two threads, each running vector instructions on 4 lanes

• Threads may be controlled by SMT or CMP scalar processor (more later)

13ICPP, August 2006

VLT Configurations: 4 Vector Threads

T0,
L0

T0,
L1

Vector Lanes

T1,
L0

T1,
L1

T2,
L0

T2,
L1

T3,
L0

T3,
L1

� Short vector length configuration

• Four threads, each running vector instructions on 2 lanes

• Threads may be controlled by SMT or CMP scalar processor (more later)

14ICPP, August 2006

VLT Configurations: Pure Scalar Threads

T0,
L0

T1,
L0

T2,
L0

T3,
L0

T4,
L0

T5,
L0

T6,
L0

T7,
L0

Vector Lanes

� Scalar (no-vector) configuration

• Eight threads, each running scalar instructions on 1 lane

• Each lane operates as a simple processor

15ICPP, August 2006

VLT vs. SMT

� VLT: exploit TLP on idle DLP resources

• Different threads on different vector lanes

• Each thread uses all functional units within a lane

� SMT: exploit TLP on idle ILP resources

• Different threads on different functional units

• In a vector processor, each thread uses all lanes

� Notes

• VLT and SMT are orthogonal & can be combined

• VLT is more important for a vector processor

� Several apps run efficiently on a 16-lane vector processor

� How many apps run efficiently on a 16-way issue processor?

16ICPP, August 2006

…

VRF VRF

VLT Implementation

Scalar Unit

L2 Cache / Memory Interface

Fetch

ROB

Vector Control Logic

LSU LSUFUs FUs

17ICPP, August 2006

…

VRF VRF

VLT Implementation: Execution Resources

� Functional units ⇒ already available

� Vector registers for additional threads ⇒ already available

• VRF slice in each lane can store the register elements for each thread

• Note that each thread uses shorter vectors

� Memory ports ⇒ already available

• Necessary to support indexed and strided patterns even with long vectors

Vector Control Logic

LSU LSUFUs FUs

18ICPP, August 2006

VLT Implementation: Vector Instr. Bandwidth

� Vector instruction issue bandwidth

• Must issue vector instructions separately for each thread

• Multiplex single vector control block, or replicate the block

• Multiplexing is sufficient as each vector instruction takes multiple cycles

� Instruction set

• Minor addition to specify configuration (number of threads)

…

VRF VRF

Vector Control Logic

LSU LSUFUs FUs

19ICPP, August 2006

VLT Implementation: Scalar Instr. Bandwidth

� Must process scalar instructions for

multiple vector threads

� Design alternatives

• Attach vector unit to SMT processor

• Attach vector unit to CMP processor

� Multiple cores share one vector unit

• Combination of the above (CMT)

• Heterogeneous CMP

� One complex & multiple simpler cores

share a vector unit

� Trade-off

• Cost vs. utilization of vector unit

Fetch

D$ ROB

Scalar Processor

20ICPP, August 2006

VLT Implementation: Scalar Threads on Vector Unit

� Challenge: each lane requires 1-2 instructions per clock cycle

• Much higher instruction bandwidth than with vector threads

• No point in using multiple scalar cores to feed the lanes

� Design approach

• Introduce a small instruction cache in each lane

� Single-ported, 1 to 4 Kbytes is sufficient

� Feeds the functional units with instructions in tight loops

• Cache misses in lanes handled by scalar core

� Scalar core instruction cache acts as a L2 instruction cache

� Low miss penalty

21ICPP, August 2006

Outline

�Motivation

� Vector processor background

� Vector lane threading (VLT)

� VLT Evaluation

• Methodology

• Vector thread results

• Scalar thread results

� Conclusions

22ICPP, August 2006

Methodology

� Simulated processor

• Based on Cray X1 ISA

• Scalar unit: 4-way OOO superscalar

• Vector registers: 32 vector registers, max. vector length of 64

• Vector execution resources: 8 lanes, 3 functional units per lane

� Software environment

• All code compiled with production Cray C and Fortran compilers

• Highest level of vector optimizations enabled

� All speedups reported are in addition to vectorization

• Used ANL macros for multithreading

� Could also use OpenMP or other mulithreading approaches

� Further details in the paper

23ICPP, August 2006

Benchmarks

� Nine benchmarks, three categories

• High DLP (long vectors), medium DLP (short vectors), no DLP

� Examples

• High DLP: matrix multiply

� 96% vectorized, average vector length of 64 (maximum)

• Medium DLP: trfd (two electron integral transformation)

� 76% vectorized, average vector length of 11.2

• No DLP: ocean (eddy currents in ocean basin)

� 0% vectorized

� Note

• Benchmarks include some sequential portions with no DLP, no TLP

24ICPP, August 2006

Vector Thread Evaluation

0

0.5

1

1.5

2

2.5

mpenc trfd multprec bt

Base VLT - 2 threads VLT - 4 threads

� Results for medium-DLP benchmarks on best scalar-core configuration

� Up to 2.3x performance improvement

• On top of vectorization for these applications

� Limitations

• Saturation of vector resources

• Cache effects, thread overhead, purely sequential portions

S
p
e
e
d
u
p

25ICPP, August 2006

VLT Cost Evaluation

� Default configuration: SU (4-way OOO) + VU

� SMT scalar unit

• 0.8% area increase for 2 VLT threads

• 1.3% area increase for 4 VLT threads

� CMP scalar unit (4-way OOO cores)

• 12.3% area increase for 2 VLT threads

• 26.9% area increase for 4 VLT threads

� CMT scalar unit (4-way OOO cores, 2 threads/core)

• 13.8% area increase for 4 VLT threads

� Heterogeneous CMP scalar unit (CMP-h)

• 3.4% area increase for 2 VLT threads

• 10.1% area increase for 4 VLT threads

26ICPP, August 2006

VLT Design Space Evaluation

0.0

0.5

1.0

1.5

2.0

2.5

mpenc trfd multprec bt

S
p
e
e
d
u
p

V2-SMT V2-CMP V4-SMT V4-CMT V4-CMP V4-CMP-h

� V4-CMT equal performance to V4-CMP

• At lower area increase (13.8% vs. 26.9%)

• Two 4-way OOO processors can saturate an 8-lane vector unit

� V4-SMT outperforms V4-CMP-h

• V4-CMP-h configuration suffers thread imbalance

27ICPP, August 2006

Scalar Thread Evaluation

� 8-lane VLT operates like a 8-way CMP with very simple cores

• No out-of-order execution, wide issues, branch prediction, etc

� Up to 2x compared to CMP (4-way cores with 2 threads/core)

• But performance may vary due to sequential code performance

2.2

2.0

1.1

0.0

0.5

1.0

1.5

2.0

2.5

radix ocean barnes

S
p
e
e
d
u
p

Scalar CMP VLT

28ICPP, August 2006

Conclusions

� Vector Lane Threading (VLT)

• Turn underutilized DLP resources (lanes) into TLP resources

• Multiple scalar processors share a vector unit

• Vector unit used as a CMP with very simple cores

� Results

• Up to 2.3x performance for applications with short vectors

• Up to 2.0x performance for applications with no vectors

• Cost-effective implementation alternatives

� Overall, VLT improves the applicability of vector processors

• Good efficiency with both high DLP and low DLP

29ICPP, August 2006

Acknowledgments

� Cray

• X1 compiler access

• Research funding through DARPA HPCS

� Stanford Graduate Fellowship

� National Science Foundation Fellowships

� Stanford Computer Forum

