
The Software Stack for The Software Stack for

Transactional MemoryTransactional Memory

Challenges and OpportunitiesChallenges and Opportunities

Brian D. Brian D. CarlstromCarlstrom

JaeWoongJaeWoong Chung,Chung,
ChristosChristos Kozyrakis, Kunle OlukotunKozyrakis, Kunle Olukotun

Computer Systems LabComputer Systems Lab

Stanford UniversityStanford University

http://tcc.stanford.eduhttp://tcc.stanford.edu

(picture will come here)

2Software Stack for Transactional Memory

Parallel ProgrammingParallel Programming

on Shared Memoryon Shared Memory

�� Traditionally done using locksTraditionally done using locks

�� But locks are hard to useBut locks are hard to use

�� Semantic problemsSemantic problems

�� DeadlockDeadlock

�� Priority inversionPriority inversion

�� Performance problemsPerformance problems

�� Simplicity at the expense of concurrencySimplicity at the expense of concurrency

�� High concurrency at the expense of simplicityHigh concurrency at the expense of simplicity

�� Pessimistic concurrencyPessimistic concurrency

3Software Stack for Transactional Memory

Transactional MemoryTransactional Memory

�� Allows for lockAllows for lock--free parallel programmingfree parallel programming

�� Transactions mark critical sectionsTransactions mark critical sections

�� Same properties as database transactionsSame properties as database transactions

�� Atomicity : all or nothingAtomicity : all or nothing

�� Isolation : no partial updatesIsolation : no partial updates

�� Transactions are easier to use than locksTransactions are easier to use than locks

�� CoarseCoarse--grained nongrained non--blocking synchronizationblocking synchronization

�� Optimistic concurrencyOptimistic concurrency

4Software Stack for Transactional Memory

Opportunities and ChallengesOpportunities and Challenges

�� TM is a promising solution for easy and TM is a promising solution for easy and
efficient parallel programming on multiefficient parallel programming on multi--
core systemscore systems

�� TM brings up both opportunities and TM brings up both opportunities and
challenges to software stackchallenges to software stack

�� TodayToday’’s talk focuses on, but not limited to, s talk focuses on, but not limited to,
the software stack on top of hardware TMthe software stack on top of hardware TM

5Software Stack for Transactional Memory

ContentsContents

�� Transactional Memory OverviewTransactional Memory Overview
�� What is TM?What is TM?

�� Why is it interesting to MultiWhy is it interesting to Multi--core systems?core systems?

�� TM example and primitivesTM example and primitives

�� Software StackSoftware Stack
�� Data StructureData Structure

�� ProgrammingProgramming CompositionComposition

�� Operating SystemOperating System

�� Language ImplementationLanguage Implementation

�� Programming ModelsProgramming Models

�� Distributed TransactionsDistributed Transactions

�� ConclusionConclusion

6Software Stack for Transactional Memory

TM execution model exampleTM execution model example
(Transactional Coherence and Consistency)(Transactional Coherence and Consistency)

CPU 0 CPU 1 CPU 2

Commit

Validation

Execute

Code

Commit

Validation

Execute

Code

Violate

Execute

Code

Re-

Execute

Code

...

ld 0xaaaa

ld 0xbbbb

...

ld 0xbeef

...

...

0xbeef
0xbeef

st 0xbeef

...

ld 0xdddd

ld 0xeeee

...

7Software Stack for Transactional Memory

Advanced TM primitivesAdvanced TM primitives
�� Nesting Nesting [isca06][isca06]

�� CallbackCallback

�� Violation Handler and Commit HandlerViolation Handler and Commit Handler

< Closed Nesting > < Open Nesting >

// A is initially 0;

Atomic {

....

// A is initially 0;

Atomic {

....

Open_Atomic {

A++; // 1

….

}

A++; // 2

}

A = ;

Core 1Core 0 Core 1Core 0

= A; // 0

A = ;

= A; // 1

Atomic {

A++; // 1

….

A++; // 2

}

}
= A; // 2 = A; // 2

8Software Stack for Transactional Memory

Data StructureData Structure
(Opportunity)(Opportunity)

�� CoarseCoarse--grain nongrain non--blocking synchronizationblocking synchronization

�� Both easeBoth ease--toto--use and performanceuse and performance

�� Nesting Nesting –– reduces violation overheadreduces violation overhead

�� Open nesting reduces the frequency of conflictsOpen nesting reduces the frequency of conflicts

�� Closed nesting reduces the penalty of violationClosed nesting reduces the penalty of violation

�� Callback Callback –– provides more programmabilityprovides more programmability

�� Violation HandlerViolation Handler

�� Automatic cleanAutomatic clean--up at conflictsup at conflicts

�� Application specific conflict handler Application specific conflict handler

9Software Stack for Transactional Memory

Data StructureData Structure
(Challenge)(Challenge)

�� How to hide the advanced techniques for How to hide the advanced techniques for

novice programmers?novice programmers?

�� TMTM--based librarybased library

�� like GNU like GNU classpathclasspath Java libraryJava library

10Software Stack for Transactional Memory

Programming CompositionProgramming Composition
(Opportunity)(Opportunity)

�� Transaction nestingTransaction nesting

�� Flexibility in composing transactionsFlexibility in composing transactions

�� Speculative parallel loopsSpeculative parallel loops

�� To avoid the hassle of setting and wrapping To avoid the hassle of setting and wrapping

up multiple threadsup multiple threads

T_FOR(..)

{

// loop iteration

}

Iter1

tx1

Iter2

tx2

IterN

txN

11Software Stack for Transactional Memory

Programming CompositionProgramming Composition
(Challenge)(Challenge)

�� Transactional I/OTransactional I/O

�� I/O bufferingI/O buffering

�� Defer I/O operations by the commitDefer I/O operations by the commit

�� Execute the deferred operations at commitExecute the deferred operations at commit

�� Conditional WaitsConditional Waits

�� Wait() is related to lock objectsWait() is related to lock objects

�� ComposibleComposible conditions for atomic regionsconditions for atomic regions

�� OverflowsOverflows

�� Deep call stacks make transactions longDeep call stacks make transactions long

�� Buffer overflow mechanismBuffer overflow mechanism

12Software Stack for Transactional Memory

Operating SystemOperating System
(Opportunity)(Opportunity)

�� NonNon--blocking synchronizationblocking synchronization

�� Easier kernel constructionEasier kernel construction

�� Potential for speedupPotential for speedup

�� Atomicity for faultAtomicity for fault--tolerancetolerance

�� TM undoesTM undoes instructions at rollbackinstructions at rollback

�� Easy checkEasy check--pointingpointing

�� Isolation for security Isolation for security [sosp03][sosp03]

�� TM isolates instructions by commitTM isolates instructions by commit

13Software Stack for Transactional Memory

Operating SystemOperating System
(Challenge)(Challenge)

�� ContextContext--switchswitch

�� In hardware TMs, transactional states have In hardware TMs, transactional states have

affinity to processors affinity to processors

�� Interrupt Interrupt [hpca06][hpca06]

�� Swapping in/out transactionsSwapping in/out transactions

�� I/OI/O

�� Software TM runs on virtual address spaceSoftware TM runs on virtual address space

14Software Stack for Transactional Memory

Programming ModelsProgramming Models
(Opportunity)(Opportunity)

�� TMTM--based models tuned for parallelismbased models tuned for parallelism

�� AtomosAtomos [pldi06][pldi06]

�� Java Java –– old synchronization APIs + new TM primitivesold synchronization APIs + new TM primitives

�� support for nesting, callback, and highsupport for nesting, callback, and high--level level

language constructlanguage construct

�� X10, Fortress, and Chapel also explore X10, Fortress, and Chapel also explore

transactions transactions

15Software Stack for Transactional Memory

Programming ModelsProgramming Models
(Challenge)(Challenge)

�� Many different semantics for TMMany different semantics for TM

�� Different definitions for the same termDifferent definitions for the same term

�� Strong vs. weak consistencyStrong vs. weak consistency

�� We prefer strong consistencyWe prefer strong consistency

�� No need to worry about possible bugs due to interaction No need to worry about possible bugs due to interaction

between transaction code and nonbetween transaction code and non--transactional code transactional code

�� APIs for application and system programmingAPIs for application and system programming

16Software Stack for Transactional Memory

Language ImplementationLanguage Implementation
(Opportunity)(Opportunity)

�� Aggressive JIT compiler optimizationAggressive JIT compiler optimization

�� Try unsafe optimizationTry unsafe optimization

�� Constant PropagationConstant Propagation

�� Rollback the computation if there is a problemRollback the computation if there is a problem

�� Restart with safe codeRestart with safe code

�� Speculative ParallelismSpeculative Parallelism

�� Make a code segment run in parallelMake a code segment run in parallel

17Software Stack for Transactional Memory

Language ImplementationLanguage Implementation
(Challenge)(Challenge)

�� Memory allocationMemory allocation

�� Private memory pool or NestingPrivate memory pool or Nesting

�� Incremental/Concurrent garbage collectionIncremental/Concurrent garbage collection

�� Use violation handlers to deal with conflicts Use violation handlers to deal with conflicts

between collectors and between collectors and mutatorsmutators

18Software Stack for Transactional Memory

Distributed TransactionsDistributed Transactions
(Opportunity)(Opportunity)

�� Integration with distributed transaction Integration with distributed transaction

systemssystems

�� Transaction Service in .Net, J2EE, and Transaction Service in .Net, J2EE, and

CORBACORBA

�� Extracting parallelism from distributed Extracting parallelism from distributed

objects with transactional propertiesobjects with transactional properties

�� Enterprise Java BeansEnterprise Java Beans

�� TX_REQUIRED, TX_BEAN_MANAGEDTX_REQUIRED, TX_BEAN_MANAGED

19Software Stack for Transactional Memory

Distributed TransactionsDistributed Transactions
(Challenge)(Challenge)

�� EE--commerce transactions are longcommerce transactions are long

�� Longer than time quantaLonger than time quanta

�� I/O operationsI/O operations

�� TM virtualization can be helpfulTM virtualization can be helpful

20Software Stack for Transactional Memory

ConclusionConclusion

�� Transactional Memory is a promising Transactional Memory is a promising

solution for parallel programmingsolution for parallel programming

�� Transactional memory brings up both Transactional memory brings up both

opportunities and challenges to software opportunities and challenges to software

stackstack

�� We hope research forces from many areas We hope research forces from many areas

join the efforts for Transactional memoryjoin the efforts for Transactional memory

