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Parallel ProgrammingParallel Programming

on Shared Memoryon Shared Memory

�� Traditionally done using locksTraditionally done using locks

�� But locks are hard to useBut locks are hard to use

�� Semantic problemsSemantic problems

�� DeadlockDeadlock

�� Priority inversionPriority inversion

�� Performance problemsPerformance problems

�� Simplicity at the expense of concurrencySimplicity at the expense of concurrency

�� High concurrency at the expense of simplicityHigh concurrency at the expense of simplicity

�� Pessimistic concurrencyPessimistic concurrency
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Transactional MemoryTransactional Memory

�� Allows for lockAllows for lock--free parallel programmingfree parallel programming

�� Transactions mark critical sectionsTransactions mark critical sections

�� Same properties as database transactionsSame properties as database transactions

�� Atomicity : all or nothingAtomicity : all or nothing

�� Isolation : no partial updatesIsolation : no partial updates

�� Transactions are easier to use than locksTransactions are easier to use than locks

�� CoarseCoarse--grained nongrained non--blocking synchronizationblocking synchronization

�� Optimistic concurrencyOptimistic concurrency
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Opportunities and ChallengesOpportunities and Challenges

�� TM is a promising solution for easy and TM is a promising solution for easy and 
efficient parallel programming on multiefficient parallel programming on multi--
core systemscore systems

�� TM brings up both opportunities and TM brings up both opportunities and 
challenges to software stackchallenges to software stack

�� TodayToday’’s talk focuses on, but not limited to, s talk focuses on, but not limited to, 
the software stack on top of hardware TMthe software stack on top of hardware TM
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ContentsContents

�� Transactional Memory OverviewTransactional Memory Overview
�� What is TM?What is TM?

�� Why is it interesting to MultiWhy is it interesting to Multi--core systems?core systems?

�� TM example and primitivesTM example and primitives

�� Software StackSoftware Stack
�� Data StructureData Structure

�� ProgrammingProgramming CompositionComposition

�� Operating SystemOperating System

�� Language ImplementationLanguage Implementation

�� Programming ModelsProgramming Models

�� Distributed TransactionsDistributed Transactions

�� ConclusionConclusion
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TM execution model exampleTM execution model example
(Transactional Coherence and Consistency)(Transactional Coherence and Consistency)

CPU 0 CPU 1 CPU 2
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Advanced TM primitivesAdvanced TM primitives
�� Nesting Nesting [isca06][isca06]

�� CallbackCallback

�� Violation Handler and Commit HandlerViolation Handler and Commit Handler

< Closed Nesting > < Open Nesting >

// A is initially 0;

Atomic {

....

// A is initially 0;

Atomic {

....

Open_Atomic {

A++;  // 1

….

}

A++; // 2

}

A = ;

Core 1Core 0 Core 1Core 0

= A; // 0

A = ;

= A; // 1

Atomic {

A++;  // 1

….

A++; // 2

}

}
= A; // 2 = A; // 2
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Data StructureData Structure
(Opportunity)(Opportunity)

�� CoarseCoarse--grain nongrain non--blocking synchronizationblocking synchronization

�� Both easeBoth ease--toto--use and performanceuse and performance

�� Nesting Nesting –– reduces violation overheadreduces violation overhead

�� Open nesting reduces the frequency of conflictsOpen nesting reduces the frequency of conflicts

�� Closed nesting reduces the penalty of violationClosed nesting reduces the penalty of violation

�� Callback Callback –– provides more programmabilityprovides more programmability

�� Violation HandlerViolation Handler

�� Automatic cleanAutomatic clean--up at conflictsup at conflicts

�� Application specific conflict handler Application specific conflict handler 
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Data StructureData Structure
(Challenge)(Challenge)

�� How to hide the advanced techniques for How to hide the advanced techniques for 

novice programmers?novice programmers?

�� TMTM--based librarybased library

�� like GNU like GNU classpathclasspath Java libraryJava library
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Programming CompositionProgramming Composition
(Opportunity)(Opportunity)

�� Transaction nestingTransaction nesting

�� Flexibility in composing transactionsFlexibility in composing transactions

�� Speculative parallel loopsSpeculative parallel loops

�� To avoid the hassle of setting and wrapping To avoid the hassle of setting and wrapping 

up multiple threadsup multiple threads

T_FOR(..)

{

// loop iteration

}

Iter1

tx1

Iter2

tx2

IterN

txN
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Programming CompositionProgramming Composition
(Challenge)(Challenge)

�� Transactional I/OTransactional I/O

�� I/O bufferingI/O buffering

�� Defer I/O operations by the commitDefer I/O operations by the commit

�� Execute the deferred operations at commitExecute the deferred operations at commit

�� Conditional WaitsConditional Waits

�� Wait() is related to lock objectsWait() is related to lock objects

�� ComposibleComposible conditions for atomic regionsconditions for atomic regions

�� OverflowsOverflows

�� Deep call stacks make transactions longDeep call stacks make transactions long

�� Buffer overflow mechanismBuffer overflow mechanism
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Operating SystemOperating System
(Opportunity)(Opportunity)

�� NonNon--blocking synchronizationblocking synchronization

�� Easier kernel constructionEasier kernel construction

�� Potential for speedupPotential for speedup

�� Atomicity for faultAtomicity for fault--tolerancetolerance

�� TM undoesTM undoes instructions at rollbackinstructions at rollback

�� Easy checkEasy check--pointingpointing

�� Isolation for security Isolation for security [sosp03][sosp03]

�� TM isolates instructions by commitTM isolates instructions by commit
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Operating SystemOperating System
(Challenge)(Challenge)

�� ContextContext--switchswitch

�� In hardware TMs, transactional states have In hardware TMs, transactional states have 

affinity to processors affinity to processors 

�� Interrupt Interrupt [hpca06][hpca06]

�� Swapping in/out transactionsSwapping in/out transactions

�� I/OI/O

�� Software TM runs on virtual address spaceSoftware TM runs on virtual address space
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Programming ModelsProgramming Models
(Opportunity)(Opportunity)

�� TMTM--based models tuned for parallelismbased models tuned for parallelism

�� AtomosAtomos [pldi06][pldi06]

�� Java Java –– old synchronization APIs + new TM primitivesold synchronization APIs + new TM primitives

�� support for nesting, callback, and highsupport for nesting, callback, and high--level level 

language constructlanguage construct

�� X10, Fortress, and Chapel also explore X10, Fortress, and Chapel also explore 

transactions transactions 
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Programming ModelsProgramming Models
(Challenge)(Challenge)

�� Many different semantics for TMMany different semantics for TM

�� Different definitions for the same termDifferent definitions for the same term

�� Strong vs. weak consistencyStrong vs. weak consistency

�� We prefer strong consistencyWe prefer strong consistency

�� No need to worry about possible bugs due to interaction No need to worry about possible bugs due to interaction 

between transaction code and nonbetween transaction code and non--transactional code transactional code 

�� APIs for application and system programmingAPIs for application and system programming
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Language ImplementationLanguage Implementation
(Opportunity)(Opportunity)

�� Aggressive JIT compiler optimizationAggressive JIT compiler optimization

�� Try unsafe optimizationTry unsafe optimization

�� Constant PropagationConstant Propagation

�� Rollback the computation if there is a problemRollback the computation if there is a problem

�� Restart with safe codeRestart with safe code

�� Speculative ParallelismSpeculative Parallelism

�� Make a code segment run in parallelMake a code segment run in parallel
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Language ImplementationLanguage Implementation
(Challenge)(Challenge)

�� Memory allocationMemory allocation

�� Private memory pool or NestingPrivate memory pool or Nesting

�� Incremental/Concurrent garbage collectionIncremental/Concurrent garbage collection

�� Use violation handlers to deal with conflicts Use violation handlers to deal with conflicts 

between collectors and between collectors and mutatorsmutators
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Distributed TransactionsDistributed Transactions
(Opportunity)(Opportunity)

�� Integration with distributed transaction Integration with distributed transaction 

systemssystems

�� Transaction Service in  .Net, J2EE, and Transaction Service in  .Net, J2EE, and 

CORBACORBA

�� Extracting parallelism from distributed Extracting parallelism from distributed 

objects with transactional propertiesobjects with transactional properties

�� Enterprise Java BeansEnterprise Java Beans

�� TX_REQUIRED, TX_BEAN_MANAGEDTX_REQUIRED, TX_BEAN_MANAGED
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Distributed TransactionsDistributed Transactions
(Challenge)(Challenge)

�� EE--commerce transactions are longcommerce transactions are long

�� Longer than time quantaLonger than time quanta

�� I/O operationsI/O operations

�� TM virtualization can be helpfulTM virtualization can be helpful
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ConclusionConclusion

�� Transactional Memory is a promising Transactional Memory is a promising 

solution for parallel programmingsolution for parallel programming

�� Transactional memory brings up both Transactional memory brings up both 

opportunities and challenges to software opportunities and challenges to software 

stackstack

�� We hope research forces from many areas We hope research forces from many areas 

join the efforts for Transactional memoryjoin the efforts for Transactional memory


