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We Need Transactional Memory

� CMPs are here but their programming model is broken

� Uniprocessors limited by power, complexity, wire latency…

� Coarse- vs. fine-grained locks

– serialization vs. deadlocks, races, and priority inversion

� Poor composability, not fault-tolerant, …

� Transactional Memory (TM) systems are promising

� Programmer-defined, atomic, isolated regions

� Demonstrated performance potential

� Many TM systems exist with different tradeoffs

– [TRL], [TCC], [U/LTM], [VTM], [LogTM], [ASTM], [McRT], …

� But we lack something…
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TM Needs an Architecture 

� A hardware/software interface

� Unified semantic model for developers

– Support transactional programming languages

– Support common OS functionality

� Enables fair evaluation of TM systems

� Now we have “xbegin” and “xend”

– Need more to implement real systems, compare designs, and 
evaluate tradeoffs

� Questions…

– How does TM interact with library-based software?

– How do we handle I/O & system calls within transactions?

– How do we handle exceptions & contention within transactions?

– How do we build implement TM programming languages?
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Architectural Semantics for TM 

� We define rich semantics for transactional memory

� Thorough ISA-level specification of TM semantics

– Applicable to all TM systems

� Rich support for PL & OS functionality

� Our approach: identify three ISA primitives

1. Two-phase commit

2. Transactional handlers for commit/abort/violations

3. Nested transactions (closed and open)

� PL & OS use primitives for higher level functionality

� ISA provides primitives, but not end-to-end solutions

� Software defines user-level API and other properties 
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Outline

� Motivation

� Architectural semantics for TM

� Basic ISA-level primitives

� ISA implementation (hardware & software)

� Implementation Overview

� HW and SW components

� Examples and Evaluation

� Example ISA uses

� Performance analysis

� Conclusions
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Two-phase Transaction Commit

� Conventional: monolithic commit in one step

� Finalize validation (no conflicts)

� Atomically commit the transaction write-set

� New: two-phase commit process

� xvalidate finalizes validation, xcommit commits write-set

� Other code can run in between two steps

– Code is logically part of the transaction

� Example uses

� Finalize I/O operations within transactions

� Coordinate with other software for permission to commit

– Correctness/security checkers, transaction synchronizers, …
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Transactional Handlers

� Conventional: TM events processed by hardware

� Commit: commit write-set and proceed with following code

� Violation on conflict: rollback transaction and re-execute

� New: all TM events processed by software handlers

� Fast, user-level handlers for commit, violation, and abort

� Software can register multiple handlers per transaction

– Stack of handlers maintained in software

� Handlers have access to all transactional state 

– They decide what to commit or rollback, to re-execute or not, …

� Example uses: 

� Contention managers 

� I/O operations within transactions & conditional synchronization

� Code for finalizing or compensating actions
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Closed-nested Transactions

xbegin

lots_of_work()

count++

xvalidate; xcommit

xbegin

...

xbegin

count++

xvalidate; xcommit

xvalidate; xcommit

� Closed Nesting

� Composable libraries

� Performance improvement

� Alternative control flow upon nested abort
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Closed-nested Transactions

xbegin

...

xbegin

ld A

st B

xvalidate; xcommit

xvalidate; xcommit

T1

T2

T1’s Read-Set T1’s Write-Set

T2’s Read-Set T2’s Write-Set

{ … } { … }

Closed-nested Semantics

{ A } { B }

{ …, A } { …, B }

Memory
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Open-nested Transactions

xbegin

...

sbrk: ...

[modify free list]

...

xvalidate; xcommit

� Open Nesting
� Escape surrounding atomicity to update shared state

– System calls

– Communication between transactions/OS/scheduler/etc.

� Performance improvements

� Preserves atomicity unlike pause/non-transactional regions

xbegin

...

sbrk: 

xbegin_open

...

[modify free list]

xvalidate; xcommit

...

xvalidate; xcommit

Shared OS 

state
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Open-nested Transactions

xbegin

...

xbegin_open

ld A

st B

xvalidate; xcommit

xvalidate; xcommit

T1

T2

T1’s Read-Set T1’s Write-Set

T2’s Read-Set T2’s Write-Set

{ … } { … }

Open-nested Semantics

{ A } { B }

Memory
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Implementation Overview

� Software

� Stack to track state and handlers

– Like activation records for function calls

– Works with nested transactions, multiple handlers per transaction

– Handlers like user-level exceptions

� Hardware

� A few new instructions & registers

– Registers mostly for faster access of state logically in the stack

� Modified cache design for nested transactions 

– Independent tracking of read-set and write-set
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Transaction Stack

TCB

Frame 1

TCB

Frame 2

TCB

Frame 3

TCB 

Stack

base_ptr

top_ptr

Register Checkpoint

Read-set / Write-Set

Status Word

Commit Handler Code

Base Commit Handler

Top Commit Handler

X2: Handler & Args

X2: Handler & Args

X1: Handler & Args

X3: Handler & Args

X3: Handler & Args

Transaction 

Control Block
Commit 

Handlers 

Stack

X2: Handler & Args

X2: Handler & Args

= in registers

= in thread-private, 

cachable main memory

= in cache / log

xbegin

...

xbegin

...

xbegin

...

xend

xend

xend

X1: Handler & Args

X1: Handler & Args

X1: Handler & Args

X1: Handler & Args
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Nesting Implementation

� Track multiple read-set and writes-sets in hardware

� Two Options: multi-tracking vs. associativity-based
� Differences in cost of searching, committing, and merging

� Multi-tracking best with eager versioning, associativity best with lazy

� Both schemes benefit from lazy merging on commit

� Need virtualization to handle overflow
� See our upcoming ASPLOS paper [Chung, et al.]

� See paper for further details
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Example Use: Transactional I/O

xbegin

write(buf, len):

register violation handler to de-alloc tmpBuf

alloc tmpBuf

cpy tmpBuf <- buf

push &tmpBuf, len; commit handler stack

push _writeCode; commit handler stack

xvalidate

pop _writeCode and args

run _writeCode

xcommit
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Example Use: Performance Tuning

� Single warehouse SPECjbb2000

� One transaction per task

� Order, payment, status, …

� Irregular code with lots of 
concurrency

� On an 8-way TM CMP

� Closed nesting: speedup 3.94

– Nesting around B-tree updates to 
reduce violation cost

– 2.0x over flattening

� Open nesting: speedup 4.25

– For unique order ID generation to 
reduce number of violations

– 2.2x over flattening

� Similar results for other benchmarks

1.95

2

2.05

2.1

2.15

2.2

2.25

SPECjbb Closed SPECjbb Open
S
p
e
e
d
u
p
 o
v
e
r 
F
la
tt
e
n
in
g



17A. McDonald, ISCA’33, June 2006

Conclusions

� Transactional memory must provide rich semantics

� Support common PL & OS features

� Enable PL & OS research around transactions

� This work

� Architectural specification of rich TM semantics

� Three basic primitives

– Two phase commit, transactional handlers, nested transactions

� Hardware and software conventions for implementation

� Demonstrated uses for rich functionality & performance

– Implemented Atomos [Carlstrom, et al.] transactional programming 
language


