
From Chaos to QoS: Case Studies in From Chaos to QoS: Case Studies in

CMP Resource ManagementCMP Resource Management

North Carolina
State University

Stanford UniversityIntel Corporation

Hari Kannan, Fei Guo, Li Zhao, Ramesh
Illikkal, Ravi Iyer, Don Newell, Yan Solihin,
Christos Kozyrakis

2

Outline

• Motivation and Problem Statement

• QoS in Resource Management

– Platform QoS

– Case Study: Cache Resource

• Experiments and Evaluation

– Prototype Implementation

– Initial Results

• Summary

3

Motivation

• More cores are integrated on the die

– Multi-tasking becomes more common: multiple applications are
running simultaneously

– Virtualized workloads become mainstream: multiple VMs are
consolidated onto the same platform

• Problems in platform resource management

– Loss of efficiency

• Disparate Behavior or Disparate Resource Usage of
simultaneously-running applications/VMs

– No fairness or determinism guarantees

• Cache space or memory bandwidth available is non-deterministic

– No prioritization

• Cannot map priority level to platform resource allocation

4

Problem Statement

•Not all applications are equal - Users have
preferences
– End-users (client) want to treat foreground preferentially
– End-users (server) want to provide service differentiation

• Priority-based OS scheduling no longer sufficient
– With more cores, OS will allow high and low priority

applications to run simultaneously
– Low priority applications will steal platform resources from

high priority apps � loss in performance & user experience

• Platform has no support for application
differentiation
– No knowledge of user preferences
– No support for preferential treatment

5

Example of Resource Sharing Impact

• Choose art as high priority and iperf as low priority

• High priority application suffers 10X more cache misses
– Iperf has poor cache locality thus thrashes the cache

• Need for the platform to comprehend the priority of applications
so that it can allocate hardware resources accordingly

0%

20%

40%

60%

80%

100%

120%

Art (alone) Art+Iperf

N
o
rm
a
li
z
e
d
 o
c
c
u
p
a
n
c
y
 (
%
)

0

2

4

6

8

10

12

N
o
rm
a
li
z
e
d
 M
P
I

Art-occupancy Art-MPI

Investigate QoS policies and mechanisms to efficiently manage
these shared resources in the presence of disparate applications.

6

Outline

• Motivation and Problem Statement

• QoS in Resource Management

– Platform QoS

– Case Study: Cache Resource

• Experiments and Evaluation

– Prototype Implementation

– Initial Results

• Summary

7

Resource Management

Capitalist

• No management of resources

• If you can generate more
requests, you will use more
resources

• Grab as you will

• E.g. All of today’s policies

• Fair distribution of resources

• Give equal share of resources to
all executing threads

• Does not necessarily guarantee
equal performance

• E.g. Partitioning resources for
fairness and isolation

Communist/Fair

• Focus on individual efficiency

• Provide more performance and
resources to the VIP

• Limited resources to non-VIP

• E.g. Service Level Agreements,
Foreground/Background

Elitist

• Focus on overall efficiency

• Give more resource to those that
need it the most, less to others

• E.g. Cache-friendly vs. Unfriendly,
resource-aware scheduling

Utilitarian

8

Platform QoS

Software
Domain

Hardware
Domain

HW
Policies

Resource
Monitoring

Resource
Enforcement

QoS
Exposure

Feedback

QoS Hints via
Architectural Interface

Memory IO
CPU
Core

Cache

QoS Enabled Resources

uArch resource
usage

Cache
Space

Bandwidth
and Latency

I/O Response
Time

Case Study

9

Platform Priority
Sent through PQR

QoS Aware OS/VMM:
Platform Priority added

to App state

QoS Exposure:
QoS Aware OS/VMM
Platform QoS Register

CacheCacheHi LoHi Lo

Low
Priority

OSOS

High
Priority

Set Application’s
Platform Priority

IOIO

MemoryMemory

QOS
Interface

Application
Platform
Priority

App
State

App
State

App
State

App
State

Resource
Monitoring:

Monitor cache
utilization per
priority level

- Tag cache requests

- Count usage per priority

Resource
Enforcement:
Enforce cache
utilization for
priority levels

- Way Partitioning
- Capacity Partitioning

Core 0 Core 1

Platform QOS
Register

Requests tagged
with Priority

QoS Aware Architecture

Expose QoS
Interface

Cache

10

Cache QoS Polices & Metrics

• Static
– N priority levels supported in platform

– Set a threshold of cache usage for
each priority level

• Dynamic
– Monitor cache space usage &

performance metric at frequent
intervals

– Dynamically Adjust based on

• QoS Targets: The extent to which
high priority application should be
improved

• QoS Constraints: The allowable
degradation to low priority
application or the overall
performance

– Metrics

• Resource performance (Miss Rate or
MPI, etc)

• Overall performance (IPC, etc)

P
e
rf
o
rm
a
n
c
e

High Priority Low Priority Overall

Dedicated Mode

Shared Mode

QoSQoS TargetTarget

Shared Mode

Dedicated ModeDedicated Mode

QoSQoS ConstraintConstraint

High priorityHigh priority

QoSQoS TargetTarget

Low priorityLow priority

QoSQoS ConstraintConstraint

Shared Mode

L2
High Priority

Data

Mid
Priority
Data

L1

CORE 0

L1

CORE 1

APP1(High) APP2(Mid)

L1

CORE 2

APP3(Low)

Low

11

Outline

• Motivation and Problem Statement

• QoS in Resource Management

– Platform QoS

– Case Study: Cache Resource

• Experiments and Evaluation

– Prototype Implementation

– Initial Results

• Summary

12

Prototype -- QoS aware OS/VMM

•Add QoS bits -- indicate the priority level of the application

•Set QoS register in the platform

– Special I/O instruction during each context switch

•Priority level management

Linux
Kernel

Add QoS bits
in process’s
state data
structure

…

Modify OS
scheduler to
set QoS
register

Add sys_getQR
and sys_setQR
system calls as
API for users

QoS
utility

Add a tool to
query/set QoS
bits in user

level

App0 AppN…

13

Simulation Framework

• Software Prototype
– QoS-enabled OS: Fedora Core 5 Linux
– QoS-enabled VMM: Xen with Suse 9.1 Linux

• Full system simulation
– Employ SoftSDV to functionally model the architecture
– Employ Casper as a cache simulator

• Modified to support monitoring and cache space allocation using static/dynamic QoS
policies

SoftSDV

Functional

CPU Model

Performance

Cache Model

QoS-Enabled Linux OS

(Fedora Core 5)

APP1 APPn
….

QoS-Enabled VMM

(Xen)

OS

App1 App2

VM1

OS

App1 App2

VM2

Disk image

APIs

S/W
Prototype

H/W
Simulation

14

Evaluation Setup

• Simulation configuration

• Applications
– QoS aware OS simulation
• Spec2000 benchmarks (gcc, ammp, art, applu, mcf, mesa)

– QoS aware VMM simulation
• Spec2000 benchmarks (art, swim, mesa, bzip2)
• Networking benchmark (Iperf)

1/2/4Cores

Unified, 256/512/2048/4096/8192 KB, 16
way, 64B line

L2 (Shared)

Unified, 32KB, 16 way, 64B line, LRUL1 (Private)

ValuesParameters

15

Static Policy on Two-core CMP

0

0.5

1

1.5

2

2.5

100% 40% 30% 20% 10%

Cache Space that Ammp can consume

N
o
rm
a
li
z
e
d
 M
P
I

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
v
e
ra
g
e
 C
a
c
h
e
 O
c
c
u
p
a
n
c
y
 (
%
)

Gcc-space Ammp-space
Gcc-MPI Ammp-MPI

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100% 40% 30% 20% 10%

Cache Space that Gcc can consume

N
o
rm
a
liz
e
d
 M
P
I

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
v
e
ra
g
e
 C
a
c
h
e
 O
c
c
u
p
a
n
c
y
 (
%
)

Ammp-space Gcc-space
Ammp-MPI Gcc-MPI

– As we reduce the cache space available for ammp, MPI for gcc is reduced

– Gcc benefits more from cache QoS than ammp

• Probably because gcc is more sensitive to the cache size around this size
range

– Low priority application exceeds its threshold

• Sharing between applications

• Capacity partitioning

– Try to find a victim of low priority if it exceeds its threshold

– Replace a high priority cache line if set is full of high priority cache lines

512K 512K

16

Static Policy on Four-core CMP

Set threshold for high, mid and low as
100%, 10%, 10%, 0%

0

0.5

1

1.5

2

2.5

3

3.5

4

Applu Art Gcc Mcf

N
o
rm
a
liz
e
d
 M
P
I

Shared

Prioritized

High

%

Mid Mid Low

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Time interval

C
a
c
h
e
 O
c
c
u
p
a
n
c
y
 (
%
)

applu art gcc mcf

AVE

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Time interval

C
a
c
h
e
 O
c
c
u
p
a
n
c
y
 (
%
)

applu art gcc mcf

AVE

– MPI for applu is reduced by 33%, MPI for art, gcc and mcf
increases by 21%, 150% and 216% respectively

– Employing cache QoS can efficiently assign a deterministic
amount of cache space to various applications.

1M

17

Static Policy on Two-VM CMP

•Iperf (low pri) in Xen’s Domain 0, art (high pri) in Domain 1

•4M cache
– MPI for art is reduced significantly

•2M cache
– MPI for art is reduced lineally

– This is at the cost of iperf performance

– The overall MPI increases significantly when iperf is limited to 10% of the 2M cache
--> resource management of small caches could adversely affect the system’s
performance if the lower priority application is not allocated a minimum amount of
cache space

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

100% 40% 30% 20% 10%

Cache Space that Iperf can consume

N
o
rm
a
liz
e
d
 M
P
II

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
v
e
ra
g
e
 C
a
c
h
e
 O
c
c
u
p
a
n
c
y
 (
%
)

Art-occupancy Iperf-occupancy
Art-MPI Iperf-MPI

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

100% 40% 30% 20% 10%

Cache Space that Ipe rf can consume

N
o
rm
a
liz
e
d
 M
P
II

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
v
e
ra
g
e
 C
a
c
h
e
 O
c
c
u
p
a
n
c
y
 (
%
)

Art-occupancy Iperf-occupancy
Art-MPI Iperf-MPI

4M 2M

18

Static Policy on Four-VM CMP

– Set threshold for high, mid, low as 100%, 20%, 20%, 10%

– MPI for art is reduced by 45%

– MPI for mesa is reduced by 10% because of the decreased
interference from iperf

– Bzip2 gets some degradation

– Iperf sees more than 2x degradation

0

0.5

1

1.5

2

2.5

Art Mesa Bzip2 Iperf

N
o
rm
a
li
z
e
d
 M
P
I Shared

Prioritized

High LowMidMid

4M

19

Comparison of Various Policies

– art as high priority and iperf as low priority

– Shared mode: without prioritization

– Fair mode: each application occupies half of the cache

– Static QoS mode: set threshold for iperf as 10%

– Dynamic QoS mode: QoS target, MPI = 0.5 of the shared
mode

– Dedicated mode: application occupies the whole cache

Static and dynamic QoS are efficient to approach the performance
improvement bound (the dedicated mode)

0

0.5

1

1.5

2

2.5

Art Iperf

N
o
rm
a
liz
e
d
 M
P
I

Shared
Fair
Static QoS
Dynamic QoS
Dedicated

20

Outline

• Motivation and Problem Statement

• QoS in Resource Management

– Platform QoS

– Case Study: Cache Resource

• Experiments and Evaluation

– Prototype Implementation

– Initial Results

• Summary

21

Summary

•Motivate QoS-aware platform by showing case studies of CMP
cache resource management

•Showed that it is important to provide better determinism in the
platform that supports multi-tasking and virtualization

•Described QoS aware architecture and QoS policies

•Developed two software prototypes (QoS aware Linux and QoS
aware Xen)

•Simulation results have shown that these techniques efficiently
manage the platform resources towards better performance for
high priority level applications

22

Future Works

• Experiment more with dynamic QoS mechanism

– Detailed Specification of QoS targets & constraints

– Other algorithms for dynamic schemes

• Study the impact of QoS on more diverse applications (servers,
VMs, etc)

• Generalize QoS for all other CMP resources
– Core, Memory, Interconnect, I/O, etc

23

Thank You!

24

Related Work

• ICS 2004
– Iyer, “CQoS: A Framework for Enabling QoS in Shared Caches of CMP

Platforms”

• PACT 2004
– Kim, Chandra, Solihin, “Fair Cache Sharing and Partitioning in a Chip

Multiprocessor Architecture”

• PACT 2006
– Hsu, Reinhardt, Iyer, Makineni, Newell, “Capitalist, Communist and Utilitarian

Policies: Shared Cache as a CMP Resource”

– Rafique, Lim, Thottethodi, “Architectural support for OS-driven CMP cache
management”

• MICRO 2006
– Qureshi, Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches”

– Nesbit, Aggarwal, Laudon, Smith, “Fair Queuing CMP Memory Systems”

– Keshavan, et al, “Molecular Caches”

