
Science of Computer Programming 63 (2006) 111–129
www.elsevier.com/locate/scico

Executing Java programs with transactional memory

Brian D. Carlstrom∗, JaeWoong Chung, Hassan Chafi, Austen McDonald, Chi Cao Minh,
Lance Hammond, Christos Kozyrakis, Kunle Olukotun

Computer Systems Laboratory, Stanford University, Stanford, CA 94305-9040, United States

Received 29 November 2005; received in revised form 1 May 2006; accepted 18 May 2006
Available online 4 August 2006

Abstract

Parallel programming is difficult due to the complexity of dealing with conventional lock-based synchronization. To simplify
parallel programming, there have been a number of proposals to support transactions directly in hardware and eliminate locks
completely. Although hardware support for transactions has the potential to completely change the way parallel programs are
written, initially transactions will be used to execute existing parallel programs. In this paper we investigate the implications
of using transactions to execute existing parallel Java programs. Our results show that transactions can be used to support all
aspects of Java multithreaded programs, and once Java virtual machine issues have been addressed, the conversion of a lock-based
application into transactions is largely straightforward. The performance that these converted applications achieve is equal to or
sometimes better than the original lock-based implementation.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Transactions; Feedback optimization; Multiprocessor architecture

1. Introduction

Processor vendors have exhausted their ability to improve single-thread performance using techniques such as
simply increasing clock frequency [1,2]. Hence they are turning en masse to single-chip multiprocessors (CMPs)
as a realistic path towards scalable performance for server, embedded, and even desktop platforms [3–6]. While
parallelizing server applications is straightforward with CMPs, parallelizing existing desktop applications is much
harder.

Traditional multithreaded programming focuses on using locks for mutual exclusion. By convention, access to
shared data is coordinated through ownership of one or more locks. Typically a programmer will use one lock per data
structure to keep the locking protocol simple. Unfortunately, such coarse-grained locking often leads to serialization
on high-contention data structures. On the other hand, finer-grained locking can improve concurrency, but only by
making code much more complex. With such code, it is often easy to end up in deadlock situations.

∗ Corresponding address: Computer Systems Laboratory, Stanford University, 353 Serra Mall - Gates 458, 94305-9040 Stanford, CA, United
States. Tel.: +1 650 723 9131.

E-mail address: bdc@stanford.edu (B.D. Carlstrom).
URL: http://tcc.stanford.edu (B.D. Carlstrom).

0167-6423/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2006.05.006

http://www.elsevier.com/locate/scico
mailto:bdc@stanford.edu
http://tcc.stanford.edu
http://tcc.stanford.edu
http://tcc.stanford.edu
http://tcc.stanford.edu
http://dx.doi.org/10.1016/j.scico.2006.05.006


112 B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129

Transactional memory has been proposed as an abstraction to simplify parallel programming [7–10]. Transactions
eliminate locking completely by grouping sequences of object references into atomic execution units. They provide
an easy-to-use technique for non-blocking synchronization over multiple objects, because the programmers can
focus on determining where atomicity is necessary, and not the implementation details of synchronization. Although
transactional memory has the potential to change the way parallel programs are written, initially transactions will
be used to execute existing parallel programs. To understand issues associated with executing existing parallel
programs using transactional memory, we investigate how Java parallel programs interact with hardware-supported
transactional memory that provides continuous transactions, which offer strong atomicity [11]. There have been
several recent proposals that can support continuous transactions such as Transactional Coherence and Consistency
(TCC), Unbounded Transactional Memory (UTM), and Virtual Transactional Memory (VTM) [12–14].

Our general approach of executing Java parallel programs with hardware transactional memory is to turn
synchronized blocks into atomic transactions. Transactions provide strong atomicity semantics for all referenced
objects, providing a natural replacement for critical sections defined by synchronized. The programmer
does not have to identify shared objects a priori and follow disciplined locking and nesting conventions for
correct synchronization. Studies show that this is what programmers usually mean by synchronized in Java
applications [15]. Optimistic execution of transactions provides good parallel performance in the common case of non-
conflicting object accesses, without the need for fine-grain locking mechanisms that further complicate correctness
and introduce significant overhead.

The paper makes the following contributions:

• We show how hardware transactional memory can support all aspects of Java multithreaded programming,
including synchronized blocks, native methods, synchronization on condition variables, and I/O statements. We
show how existing Java applications can be run with few, if any, changes to the program.

• We describe how the implementation of Java virtual machines interacts with transactions, including issues
surrounding signals, thread scheduling, just-in-time (JIT) compilers, dynamic linking, memory allocation, and
garbage collection.

• We demonstrate the results of running parallel Java programs, showing how our transactional execution matches
or exceeds the performance of the original lock-based versions.

While our evaluation uses a continuous transactional memory system, the general problem of running Java
programs with transactions is also found in other hardware and software transactional memory systems. In addition,
the issues found in our virtual machine implementation apply to similar techniques in other implementations and even
other language implementations.

The rest of the paper is organized as follows. Section 2 provides an architectural overview of continuous
transactional execution models. Section 3 describes running Java applications with transactions. In Section 4, we
evaluate the performance of transactional Java programs. Section 5 discusses related work, and we conclude in
Section 6.

2. Continuous transactional architectures

The particular variant of transactional memory we consider in this paper is continuous transactions. Continuous
transactional architectures provide hardware support for transactional memory in a shared-memory multiprocessor.
Each thread consists of a sequence of transactions, where each transaction is a sequence of instructions guaranteed
to execute and complete only as an atomic unit. As opposed to earlier hardware transactional memory proposals,
there is no execution outside of transactions. The processors execute transactions, enforce atomicity, and maintain
memory consistency and cache coherence only at transaction boundaries, when object updates are propagated to
shared memory. By using the continuous transactional model, programmers can be provided a programming model
with strong atomicity [11], which avoids unintended interactions between synchronized and non-synchronized code.

Each processor follows a cycle of transaction execution, commit, and potential re-execution. Each transaction is
executed speculatively, assuming it operates on data that is disjoint from transactions running concurrently on other
processors. Writes are buffered locally, and do not update shared memory before the transaction commits. Transactions
are considered indivisible if they are supporting a programmer defined notion of atomicity or divisible if they can be
split as needed by the hardware. For example, if an indivisible transaction exceeds its processor’s cache capacity, its



B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129 113

public static void main(String[] args){
a(); // a(); divisible transactions
synchronized(x){ // COMMIT();

b(); // b(); indivisible transaction
} // COMMIT();
c(); // c(); divisible transactions

} // COMMIT();

Fig. 1. Converting a synchronized block into transactions.

write-set overflow can be managed by software buffering [7,10] or lower levels of the memory hierarchy [16,13,14]
whereas a divisible transaction can be split as needed by a commit.

When a transaction commits, it communicates its write-set to the rest of the system. Other processors determine
when they have speculatively read data that has been modified by another transaction. These data dependency
violations trigger re-execution to maintain atomicity, usually of the other processor’s current transaction, but
potentially of the committing processor. Hardware guarantees that transaction commits are seen by all processors
in the same order, so commits are always globally serialized. Some systems allow programmer specified ordering
of transaction commits to support such features as loop speculation and speculating through barriers. Systems that
only support unordered transactions sometimes require transactions to commit from oldest to youngest to ensure
forward progress which could lead to load balancing issues. Some systems simply favor older transactions when a
data dependency violation is detected. Other systems simply allow transactions to commit on a first come, first served
basis, addressing forward progress through other mechanisms.

Transactional buffering and commit provide atomicity of execution across threads at hardware speeds. A mul-
tithreaded language like Java can build on these mechanisms to provide non-blocking synchronization and mutual
exclusion capabilities, as we explain in Section 3.

3. Running Java with transactions

In this section we explain how the concurrency features of the Java programming language are mapped to a
transactional execution model in order to run existing Java programs with a continuous transactional execution model.
In the course of our explanation, we discuss how transactions interact with the Java memory model, the Java Native
Interface, non-transactional operations, and exceptions. We also discuss the issues associated with running a Java
virtual machine with transactions. In general, there were minimal changes to applications and more extensive changes
to the virtual machine.

3.1. Mapping Java to transactions

In this section we discuss how various existing Java constructs are mapped into transactional concepts.

Synchronized blocks
When running with a transactional memory model, synchronized blocks are used to mark indivisible transactions

within a thread. Since continuous transactional hardware runs code in transactions at all times, a synchronized
block defines three transaction regions: the divisible transactions before the block, the indivisible transaction within
the block, and the divisible transactions after the block. Similarly, accesses to volatile fields are considered to be
small indivisible transactions. As an example, consider the simple program shown in Fig. 1. This program creates an
indivisible transaction separated by other divisible transactions by commit points as shown.

When synchronized blocks are nested, either within a method or across method calls, only the outermost
synchronized block defines an indivisible transaction. This is referred to as a closed nesting model [17]. As an
example, consider the simple program shown in Fig. 2. This program also creates a single indivisible transaction as
shown.

Handling nested transactions is important for composability. It allows the atomicity needs of a caller and callee to
be handled correctly without either method being aware of the other’s implementation. The block structured style of



114 B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129

public static void main(String[] args){
a(); // a(); divisible transactions
synchronized(x){ // COMMIT();

b1(); // b1();
synchronized(y){ //

b2(); // b2(); indivisible transaction
} //
b3(); // b3();

} // COMMIT();
c(); // c(); divisible transactions

} // COMMIT();

Fig. 2. Converting nested synchronized blocks into transactions.

String intern () {
synchronized (map){
Object o=map.get(this);
if (o!=null){
return (String)o;

}
map.put(this,this);
return this;

}
}

Fig. 3. A string interning example.

void handleRequest(
String id,
String command){
synchronized (sessions){
Session s =
sessions.get(id);

s.handle(command);
sessions.put(id,s);

}
}

Fig. 4. Synchronizing on a Session.

synchronized is fundamental to this, as it ensures that transaction begins and ends are properly balanced and nested.
Simply exposing a commit method to programmers would allow a library routine to commit arbitrarily, potentially
breaking the atomicity requirements of a caller.

While nested transactions are necessary for composability, the runtime flattening into a single transaction simplifies
execution, making the common case fast. The database community has explored alternatives, including nested
transactions allowing partial rollback. Evaluating the need for and implementing such alternatives is beyond the scope
of this paper but is discussed in more recent work [18].

Although synchronized blocks are used to mark indivisible transactions, the actual lock object specified is not
used. That is because the continuous transactional hardware will detect any true data dependencies at runtime. In a
purely transactional variant of Java, one can imagine replacing synchronized blocks with a simpler atomic syntax
omitting the lock variable as is done in other systems [10,19,20]. In such a system, programmers would not need to
create a mapping between shared data and the lock objects that protect them.

The fact that the lock variables are not used points to a key advantage of transactions over locks. In Java without
transactions, there is not a direct link between a lock object and the data it protects. Even well intentioned programs can
mistakenly synchronize on the wrong object when accessing data. With transactions, all data accesses are protected,
guaranteeing atomic semantics in all cases. There is no reason for basic data structures to provide any synchronization,
because the caller defines its own atomicity requirements. Hence, programmers can write data structures without
resorting to complex fine grained locking schemes to minimize the length of critical sections.

For example, the evolution of Java collections shows how locking can complicate one of the most basic data
structure classes: the hash table. Java’s original Hashtable used synchronized to guarantee internal consistency,
which is important in a sandbox environment. However, in JDK 1.2, a simpler non-locking HashMap was introduced,
since most applications needed to avoid the overhead of the implicit locking of the original Hashtable. Recently,
JDK 1.5 has complicated matters further by adding a ConcurrentHashMap that allows multiple concurrent readers
and writers.

A transactional memory model eliminates the need for this kind of complexity in the common case. Consider the
simple string interning example in Fig. 3. With transactional execution, there is no need to use anything other than the



B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129 115

synchronized int get(){
while (available == false)
wait();

available = false;
notifyAll();
return contents;

}

Fig. 5. get code used by the consumer.

synchronized void put(int i){
while (available == true)
wait();

contents = i;
available = true;
notifyAll();

}

Fig. 6. put code used by the producer.

non-locking HashMap since the caller specifies its atomicity requirements, creating a single logical operation out of the
Map get and put operations. Concurrent reads to the map happen in parallel due to speculation. Even non-conflicting
concurrent writes happen in parallel. Only conflicting and concurrent reads and writes cause serialization and this is
handled automatically by the system, not the programmer.

Traditionally, users of synchronized blocks are encouraged to make them as short as possible to minimize
blocking other threads’ access to critical sections. The consequences of making the critical section too large is that
processors often spend more time waiting and less time on useful work. At worst, it can lead to complete serialization
of work. Consider the example code in Fig. 4. Because of the way this code is written with a synchronized
block around the entire routine, a multithreaded web server becomes effectively single threaded, with all requests
pessimistically blocked on the sessions lock even though the reads and writes are non-conflicting. Because a
transactional system can simply optimistically speculate through the lock, it does not have this serialization problem.
Non-minimally sized transactions do not cause performance problems unless there is actual contention within the
transactions, unlike the serialization problems cause by a mutual exclusion approach based on locks.

wait, notify, notifyAll
When threads need exclusive access to a resource, they use synchronized blocks. When threads need to

coordinate their work, they use wait, notify, and notifyAll. Typically, these condition variable methods are used
for implementing producer–consumer patterns or barriers.

Consider the example of a simple producer–consumer usage of wait and notifyAll derived from [21] shown
in Fig. 5 and in Fig. 6. This code works in a non-transactional system as follows. When a consumer tries to get the
contents, it takes the lock on the container, checks for contents to be available, and calls wait if there is none,
releasing the lock. After returning from wait, the caller has reacquired the lock but has to again check for contents
to be available since another consumer may have taken it. Once the data is marked as taken, the consumer uses
notifyAll to alert any blocking producers that there is now space to put a value. An analogous process happens for
producers with put.

In a transactional system, the get method is synchronized so the method is run as an indivisible transaction.
If there is no data available and we need to wait, we commit the transaction as if the synchronized block was
closed. This is keeping analogous to the semantics of wait releasing the lock and making updates visible. When the
thread returns from waiting, we start a new indivisible transaction.

Because we commit on wait, we also are committing state from any outer synchronized blocks, potentially
breaking atomicity of nested locks. One alternative considered was using rollback, since that would preserve
the atomicity of outer synchronized blocks and works for most producer–consumer examples. However, many
commonly used patterns for barriers would not work with rollback. Rollback prevents all communication, but the
existing Java semantics of wait are to release a lock and make any changes visible. This loss of atomicity in outer
synchronized blocks because of nesting is a common source of problems in existing Java programs as well [22].

Fortunately, the nesting of wait in synchronized blocks is rare, since it causes problems in existing Java programs
as well. Java programmers are advised not to place calls to wait within nested synchronized blocks because when
a thread waits, it retains all but one lock while it is asleep [22]. By their very nature, condition variables are used
to coordinate the high-level interactions of threads, so it is rare for them to be used deeply in library routines. For
example, a survey of the Apache Jakarta Tomcat web server version 5.5.8 does not reveal any wait calls nested
within an outer synchronized block. Tomcat does have libraries for purposes such as producer–consumer queuing
that include uses of wait on an object with a corresponding synchronized block on the same object, but they are
used only for high-level dispatching and not called from synchronized blocks on other objects. A further example



116 B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129

is in SPECjbb2000, which has one example of a barrier where committing works and rollback would fail by causing
all threads to wait.

The handling of wait is the thorniest problem in the transactional execution of Java programs. If we treat wait
as a rollback, we have composable transactional semantics but existing programs will not run. If we treat wait as a
commit, it is easy to come up with contrived programs that will not match the previous semantics. However we have
never seen a benchmark or system that exhibits a problem treating wait as commit. In a programming language built
with transactions in mind, the rollback semantics would make more sense [20,23]; all of the problematic examples
requiring commit could be rewritten to use rollback semantics.

3.2. Impact of transactions on Java

In this section we discuss how transactions relate to several aspects of the Java programming language.

Java memory model
A new Java memory model was recently adopted to better support various shared memory consistency models [24–

26]. The new model has been summarized in [10] as follows:

if a location is shared between threads, either:
(i) all accesses to it must be controlled by a given mutex, or
(ii) it must be marked as volatile.

These rules, while overly simplified, are an excellent match for transactional execution as well as an easy model
for programmers to understand. The Java memory model ties communication to synchronized and volatile code.
In our system, these same constructs are used to create indivisible transactions working with shared data.

Runtime violation detection can be used to detect programs that violate these rules, an advantage of continuous
transactional execution with “always on” violation detection. For example, a divisible transaction might be violated,
indicating that a location is shared between threads without being protected by a synchronized block or volatile
keyword. Alternatively, an indivisible transaction can be violated by divisible transaction. While the strong atomicity
property of continuous transaction execution guarantees that such violations are detected, other systems that only
offer weak atomicity do not define the interaction between code inside transactions and code outside transactions.
Therefore, in the interest of portability, a system with continuous transaction execution may want to report violations
between divisible and indivisible transactions.

Java Native Interface
The Java Native Interface (JNI) allows Java programs to call methods written in other programming languages,

such as C [27]. Software transactional memory systems typically forbid most native methods within transactions [10].
This is because those systems only can control the code compiled by their JIT compiler and not any code within
native libraries. While some specific runtime functions can be marked as safe or rewritten to be safe, this places a lot
of runtime functionality in the non-transactional category.

This limitation of software transactional memory systems destroys the composability and portability of Java
software components. Code within synchronized blocks cannot call methods without understanding their
implementation. For example, an application using JDBC to access a database needs to know if the driver uses JNI.
Even “100% Pure Java” drivers may use java.* class libraries that are supported by native code. Therefore, code
carefully written to work on one Java virtual machine may not work on another system, since the language and library
specifications only consider nativeness to be an implementation detail, and not part of the signature of a method.

On the other hand, hardware transactional memory systems do not suffer from this limitation, since they are source-
language neutral. Transactions cover memory accesses both by Java and native code. This allows programmers to treat
code that traverses both Java and native code together as a logical unit, without implementation-specific restrictions.

Non-transactional operations
Certain operations are inherently non-transactional, such as I/O operations. Many transactional memory systems

simply consider it an error to perform a non-transactional operation within a transaction. This certainly would prevent
correct execution of existing Java programs.



B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129 117

Continuous transactional architectures might seem to pose an extra challenge because of their “all transactions, all
the time” nature. However, divisible transactions can handle non-transactional operations by implicitly committing
before the operation so there is no memory state to be violated and cause a rollback. Since these code regions do not
guarantee atomicity, it is legal to freely commit their results at any point. There are a variety of approaches to the more
difficult case of non-transactional operations in indivisible transactions.

A simple approach is to allow only one indivisible transaction to run non-transactional operations at a time. Other
transactions that do not need to run non-transactional operations may continue to execute in parallel, but cannot
commit. Once the indivisible transactions that performed the non-transactional operation commit, other transactions
may then commit or begin their own non-transactional operations. This approach generally works with current Java
programs. In contrast, the other, more advanced approaches presented below require changes in applications, libraries,
or the underlying runtime. In this study we have taken this simple approach.

Another approach to non-transactional operations is to require that the operations be moved outside of indivisible
transactions. For example, an HTTP server can read a request from the network interface into memory, use transactions
as it likes, producing a response buffered to memory, and finally write the response to the network after the transactions
have committed. However, manually restructuring code in this way is undesirable. Modular systems are built on
composable libraries. We need a general way to address non-transactional operations without disturbing the logical
structure of the code.

A more programmer-friendly way to implement this structure is with changes to the runtime system. Non-trans-
actional operations within indivisible transactions are recorded at each call but only performed at commit time using
transaction callbacks, a common solution in traditional database systems [28]. For example, a logging interface for
debugging typically prints messages as they are received. A transactional runtime implementation could buffer the
messages in a thread local variable when running in an indivisible transactional after registering a commit callback.
Only when the original, indivisible transaction commits is the callback called to write out the buffered messages. This
is a relatively simple pattern that can generally be applied to library code. For convenience, a reusable wrapper class
can be used for such common cases as buffering stream output. In a transactional runtime, this functionality could be
built into the standard BufferedOutputStream and BufferedWriter classes, allowing most output code to work
without modification. While commit handlers are useful for delay output, rollback handlers can be used for some cases
of reverting input. However, with the combination of rollback handlers and transactional memory this is problematic
because when the transaction rolls back, the registration of the handler itself could be rolled back. We will describe a
possible solution to this issue in Section 5.

There are several classes of non-transactional operations. Most non-transactional operations are concerned with
I/O. However, some operations, such as asking for the current time, may be deemed safe for use within transactions
without being considered “non-transactional” operations. Another common non-transactional operation in our current
model is thread creation. Although alternative and more complex models could support rolling back of thread creation,
this is of little practical value. As in the above example of nesting conditional waiting within existing transactions, it
seems better to consider thread creation a high-level operation that rarely occurs within deep nesting of synchronized
blocks.

Exceptions
We treat transactions and exceptions as orthogonal mechanisms. Most exceptions in practice are IOExceptions

or RuntimeExceptions. Since we would not be able to guarantee the rollback of non-transactional operations, our
exception handling follows the flow of control as expected by today’s Java programmers. Fig. 7(a) illustrates an
example. If no exceptions are thrown, the code produces the transactions shown in Fig. 7(b). On the other hand, if
b2() throws an IOException and e2() throws a RuntimeException, the code is equivalent to Fig. 7(c). This is
exactly the same control flow as current Java exception handling.

3.3. Java virtual machine and transactions

In order to run Java programs with transactions, it was first necessary to get a Java virtual machine running on
continuous transactional hardware. We chose to evaluate Java programs using the Jikes Research Virtual Machine
(JikesRVM) version 2.3.4. JikesRVM, formerly known as the Jalapeño Virtual Machine, has performance competitive
with commercial virtual machines and is open source [29]. While getting applications to run transactionally was



118 B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129

try {
a();
synchronized(x){

b1();
b2();
b3();

}
c();

}
catch (IOException e){

d();
synchronized(y){

e1();
e2();
e3();

}
f();

}
finally {

g();
}

(a) Example code.

a();
COMMIT();
b1();
b2();
b3();
COMMIT();
c();

g();

(b) No exceptions.

a();
COMMIT();
b1();
b2();

COMMIT();

d();
COMMIT();
e1();
e2();

COMMIT();

g();

(c) Exceptions.

Fig. 7. Example of intermixing transactions and exceptions. (a) A try-catch construct containing synchronized blocks. (b) Runtime transactions
created by the non-exceptional case from code. (c) Runtime transactions created when exceptions are thrown from b2() and e2().

straightforward, we had to address a number of systems issues and make virtual machine implementation changes to
JikesRVM to get a working system with good performance.

Signals
The first issue we encountered was how to handle Unix signal delivery in a transactional system. Signals can be

classified as into two categories: synchronous and asynchronous. Synchronous signals are generated by the program
itself when it performs an exception-causing operation, such as dividing by zero. Asynchronous signals come from
outside the current program context, such as timer interrupts.

Because synchronous signals are caused by the current instruction, we chose to have the handler, if any, run as part
of the current transaction. This allows Java exceptions that rely on signals in the JikesRVM implementation such as
NullPointerException to work as defined in Section 3.2. Asynchronous signals were less straightforward. If we
allowed them to be delivered immediately, we logically would have to save the transaction buffers so that the unrelated
signal handler could not interfere with the transaction that just happened to be interrupted. Non-synchronized
transactions can just commit anywhere, allowing us to commit and execute the asynchronous signal handler in a
new transaction. However, if all processors are executing synchronized transactions that must complete atomically,
then delivery of the signal must be postponed until one of the transactions commits. This could result in unacceptably
long interrupt-handling delays, however, so it may be necessary to just roll back a synchronized transaction to free
up a processor immediately. In our implementation, we follow the simple approach delivering asynchronous signals
on the first available non-transactional processor.

Scheduler
The JikesRVM scheduler multiplexes Java threads onto Pthreads. As Java threads run, code inserted by the compiler

in methods prologues, epilogues, and back-edges determines if the current thread should yield control back to the
scheduler. Unfortunately when the scheduler notifies threads to yield, all running transactions are violated by the write.
The scheduler also maintained a global wakeup queue of ready threads. Multiple threads trying to yield and reschedule
can violate each other. Another problem was context switching Java threads between two different Pthreads. It is not



B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129 119

enough to simply move the register state since the current transactional state also includes the buffer read- and write-
set.

Our simple workaround was to avoid multiplexing threads by matching the number of Java threads to the number
of Pthreads, maintaining per processor scheduler queues, and pinning our threads to processors. The scheduler never
needed to preempt our threads and could not migrate them to other processors, avoiding the above issues. A next step
could be to defer the thread switch test until transaction commit time. Similar to signals, another solution could be to
commit divisible transactions at thread switch points and to rollback indivisible transactions.

Just-in-time compiler
JikesRVM features the Adaptive Optimization System (AOS), that is used to selectively recompile methods

dynamically. When it first compiles a method, JikesRVM typically uses its baseline just-in-time (JIT) compiler that
is geared to generating code fast rather than generating fast code. The generated code contains invocation counters
to measure how often a method is called and edge counters to measure statistics about basic block usage. Based on
these statistics, the most-used methods are selected for recompilation by an optimizing compiler that can use the basic
block statistics to guide compilation.

Unfortunately, these global counters introduce data dependencies between transactions that are out of the
application’s control. A simple workaround is to just disable the adaptive optimizing system and force the use of
the optimizing compiler at all times, although without statistics information. However, since these counters do not
need to be 100% accurate, a simple solution might be to allow non-transaction update of the counters. For example,
if a load instruction could be non-transactional, it could be used to read counters in all generated code. Since no
transaction would consider the location to have been read as part of their transaction, violations would be avoided.
The newly incremented value could then be written back normally as part of the surrounding transaction commit.

A more commonplace problem for all dynamic linkers, including JIT compilers and traditional C applications, is
avoiding violations when resolving references. Two threads trying to dynamically link the same unresolved routine
will both invoke the JIT and update the reference, causing one of the threads to violate. Again, using a non-
transactional load to test the reference could avoid the violation, at the cost of the occasional double compilation
or reference resolution. This becomes more important with systems like AOS, where high usage methods are the ones
most often recompiled at runtime.

While some hardware transactional memory systems allow non-transactional reads and writes with transactions,
open nested transactions provide an alternative approach that preserves some atomicity transactional properties of
transactions while reducing isolation between transactions. [18,23,30,17]. By placing runtime operations such as
method invocation counter updates within open nested transactions, the parent application transactions are not rolled
back by conflicts involving only the child open nested transaction.

Memory management
Memory management is another area where Java virtual machines need to be transaction aware. Poorly designed

memory allocators can cause unnecessary violations. Early Java virtual machines had scalability problems because
of contention for a single global allocator. While this has been addressed in current virtual machines intended for
server use, shared structures still exist. For example, we saw violations because of allocators requesting pages from a
common free list. As a result, instead of refilling local allocators on demand, if a threads allocator is running low on
pages, it may be better to refill it before entering a synchronized block.

Garbage collection can have issues similar to preemptive thread scheduling. Current stop-the-world collectors
assume they can suspend threads, possibly using those threads’ processor resources for parallel collection. As with
thread scheduling, we need to either commit or rollback all outstanding transactions to allow the garbage collector to
start. Concurrent collectors need to try to partition their root sets to avoid violations and keep their own transactions
small to avoid losing too much work when violations do occur. In the end, for this study we simply chose to disable the
garbage collector and run with a one gigabyte heap, but transactional garbage collection is an area of future interest
for us.

3.4. Summary

Table 1 provides a summary of the rules described in Sections 3.1 and 3.2 to execute Java programs with
transactional memory. Table 2 provides a summary of issues found in the Java virtual machine implementation
discussed in Section 3.3.



120 B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129

Table 1
Rules for the execution of Java programs with transactional memory

Feature Transactional interpretation

synchronized & volatile Transactions with nesting handled by flattening
Object.wait Transaction commit in addition to wait

Object.notify[all] No change
Java Memory Model Simplified interpretation from [10]
Java Native Interface (JNI) No change
I/O operations (1) Serialize I/O transactions

(2) Move I/O out of transactions
(3) Provide rollback compensation

Thread.start Commit current divisible transaction
only allowed outside of synchronized

Exceptions No change

Table 2
Java virtual machine issues in a transactional memory system

Feature Transactional implementation

Signals Asynchronous signals delivered between transactions
Scheduler (1) Rollback partial transactions on context switch

(2) Delay context switch until end of transaction
Just-in-time compiler Non-transactional update of shared runtime values
Memory allocation Thread local pool refilled between transaction
Garbage collector Rollback partial transactions before collection

4. Performance evaluation

In this section we compare the performance of existing Java programs running on a traditional multi-processor
using snoopy cache coherence and the same applications converted to run on a continuous transactional multi-
processor. We discuss the Java virtual machine and simulator used for evaluation, describe the benchmarks performed,
and discuss the results.

4.1. Environment

As discussed previously in Section 3.3, we evaluate programs using JikesRVM with the following changes. The
scheduler was changed to pin threads to processors and not migrate threads between processors. Methods were
compiled before the start of the main program execution. The garbage collector was disabled and a one gigabyte
heap was used. When running transactionally, synchronized blocks and methods were run transactionally and
Object.wait() was changed to perform a transaction commit. The results focus on benchmark execution time,
skipping virtual machine startup.

JikesRVM was run with an execution-driven simulator of a PowerPC CMP system that implements the TCC
continuous transaction architecture as well as MESI snoopy cache coherence for evaluating locking [31]. All
instructions, except loads and stores, have a CPI of 1.0. The memory system models the timing of the L1 caches,
the shared L2 cache, and buses. All contention and queuing for accesses to caches and buses is modeled. In particular,
the simulator models the contention for the single data port in the L1 caches, which is used for processor accesses and
commits for transactions or cache-to-cache transfers for MESI. Table 3 presents the main parameters for the simulated
CMP architecture. The victim cache is used for recently evicted data from the L1 cache.

4.2. Results

To evaluate running Java with hardware transactional memory, we ran a collection of benchmarks, as summarized
in Table 4, using both locks and transactions. The single-processor version with locks is used as the baseline for
calculating the percentage of normalized execution time, with a lower percentage indicating better performance. The



B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129 121

Table 3
Parameters for the simulated CMP architecture

Feature Description

CPU 1–16 single-issue PowerPC cores
L1 64-KB, 32-byte cache line, 4-way associative, 1 cycle latency
Victim cache 8 entries fully associative

Bus width 16 bytes

Bus arbitration 3 pipelined cycles
Transfer latency 3 pipelined cycles

L2 cache 8MB, 8-way, 16 cycles hit time
Main memory 100 cycles latency, up to 8 outstanding transfers

Bus width and latency parameters apply to both commit and refill buses. L2 hit time includes arbitration and bus transfer time.

Table 4
Summary of benchmark applications

Benchmark Description Input

TestHistogram [32] Histogram of test scores 80,000 scores
TestHashtable [10] Threaded Map read/write 4,000 get, 4,000 put

TestCompound [10] Threaded Map swaps 8,000 swaps
SPECjbb2000 [33] Java Business Benchmark 368 transactions
Series [34] Fourier series 100 coefficients
LUFact [34] LU factorization 500 × 500 matrix
Crypt [34] IDEA encryption 300,000 bytes
SOR [34] Successive over relaxation 100 × 100 grid
SparseMatmult [34] Sparse matrix multiplication 5000 × 5000 matrix
MolDyn [34] N-body molecular dynamics 256 particles, 10 iters.
MonteCarlo [34] Financial simulation 160 runs
RayTracer [34] 3D ray tracer 16 × 16 image

execution time is broken down into five components. Useful time is for program instruction execution. L1 Miss time
results from stalls on loads and stores. When running with locks, Idle/Sync time is due to the synchronization overhead.
When running with transactions, Commit time is spent committing the write-set to shared memory, and Violation time
is the time wasted from data dependency violations.

The micro-benchmarks are based on recent transactional memory papers from Hammond [32] and Harris [10]. For
a server benchmark we included SPECjbb2000 [33], while for numerical benchmarks we included the multithread Java
Grande kernels and applications [34]. For each benchmark, we provide a description of its conversion to transactions.

TestHistogram
TestHistogram is a micro-benchmark to demonstrate transactional programming from Hammond [32]. Random

numbers between 0 and 100 are counted in bins. When running with locks, each bin has a separate lock to prevent
concurrent updates. When running with transactions, each update to a bin is one transaction.

Fig. 8 shows the results from TestHistogram. While the locking version does exhibit scalability over the single
processor baseline, the minimal amount of computation results in significant overhead for acquiring and releasing
locks, which dominates time spent in the application. The transactional version eliminates the overhead of locks and
demonstrates scaling to 8 CPUs; transactions allow optimistic speculation while locks caused pessimistic waiting.
However, at 16 CPUs the performance of the transactional version levels off, because data dependency violations
become more frequent with this number of bins.

TestHashtable
TestHashtable is a micro-benchmark that compares different java.util.Map implementations. Multiple

threads contend for access to a single Map instance. The threads run a mix of 50% get and 50% put operations.
We vary the number of processors and measure the speedup attained over the single processor case.



122 B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129

Fig. 8. TestHistogram creates a histogram of student test scores. Results compare locks and transactions between 2 and 16 CPUs.

When running with locks, we run the original synchronized Hashtable, a HashMap synchronized using the
Collections class’s synchronizedMap method, and a ConcurrentHashMap from util.concurrent Release
1.3.4 [35]. Hashtable and HashMap use a single mutex, while ConcurrentHashMap uses finer grained locking to
support concurrent access. When running with transactions, we run each HashMap operation within one transaction.

Fig. 9 shows the results from TestHashtable. The results using locks for Hashtable (HT) and HashMap
(HM) show the problems of scaling when using a simple critical section on traditional multi-processors. The
synchronizedMap version of HashMap actually slows down as more threads are added while Hashtable only gets
a very small improvement up to 8 processors and a slowdown at 16 processors. While ConcurrentHashMap (CHM
Fine) shows that fine-grained locking implementation is scalable, this implementation requires significant complexity.
With transactions, we can use the simple HashMap with the same critical region as ConcurrentHashMap and achieve
similar performance.

TestCompound

TestCompound is a micro-benchmark that compares the same Map implementations as TestHashtable. Again the
threads contend for access to a single object instance, but this time instead of performing a single atomic operation on
the shared instance, they need to perform four operations to swap the values of two keys. We perform two experiments
that demonstrate both low-contention and high-contention scenarios: the low-contention case uses a 256 element table
and the high-contention case uses an 8 element table.



B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129 123

Fig. 9. TestHashtable performs a 50%–50% mix of Map get and put operations. Results compare various Map implementations between 2 and 16
CPUs. Key: HM = HashMap with a single caller lock, HT = Hashtable with a single internal lock, CHM Fine = ConcurrentHashMap with fine
grained internal locks, Trans. HM = HashMap with a single transaction.

We use the same basic Map implementations as with TestHashtable. For Hashtable and HashMap, our critical
section uses the Map instance as the lock. For ConcurrentHashMap, we use two variations of the benchmark
representing coarse-grained locking and fine-grained locking. The coarse-grained locking variation uses the Map
instance as a lock, as with Hashtable and HashMap. The fine-grained locking variation uses the keys of the values
being swapped as locks, being careful to order the acquisition of the locks to avoid deadlock.

The left side of Fig. 10 shows the results of TestCompound with low contention for locks. Again, running
Hashtable and HashMap with simple locking show the problems of simple locking in traditional systems.
Furthermore, the coarse-grained version of ConcurrentHashMap (CHM Coarse) demonstrates that simply getting
programmers to use data structures designed for concurrent access is not sufficient to maximize application
performance. With locking, the application programmer must understand how to use fine-grained locking in their own
application to properly take advantage of such data structures. As we continue to increase the number of threads, these
applications with coarse-grained locks do not continue to scale, and, as shown, often perform worse than the baseline
case. Only a fine-grained version of ConcurrentHashMap compares favorably with transactions. Transactions have
a performance advantage due to speculation. More importantly, transactions are able to beat the performance of
fine-grained locks using only the most straightforward code consisting of a single synchronized block and the
unsynchronized HashMap. Hence, transactions allow programmers to write simple code focused on correctness that
performs better than complex code focused on performance.

The right side of Fig. 10 shows the results of TestCompound with high contention for locks. The locking version
of Hashtable, HashMap, and coarse-grained ConcurrentHashMap all perform similarly to the low contention case.
Fine-grained ConcurrentHashMap and transactional performance are both degraded from the low-contention case
because of lock contention and data dependency violations. However, in this especially tough case, transactions
manage to beat out locks by the largest margin seen in all of these results.



124 B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129

Fig. 10. TestCompound performs four Map operations as a single compound operation to atomically swap the values of random keys. Results
compare various Map implementations between 2 and 16 CPUs. Key: HM = HashMap with a single lock, HT = Hashtable with a single lock,
CHM Coarse = ConcurrentHashMap with a single lock, CHM Fine = ConcurrentHashMap with fined grained key locking, Trans. HM =

HashMap with a single transaction.

SPECjbb2000
SPECjbb2000 is a server-side Java benchmark, focusing on business object manipulation. I/O is limited, with

clients replaced by driver threads and database storage replaced with in-memory binary trees. The main loop iterates
over five application transaction types: new orders, payments, order status, deliveries, and stock levels. New orders
and payments are weighted to occur ten times more often than other transactions and the actual order of transactions
is randomized. We ran using the default configuration that varies the number of threads and warehouses from 1 to
16, although we measured for a fixed number of 368 application-level transactions instead of a fixed amount of wall
clock time. The first part of Fig. 11 shows the results from SPECjbb2000. Both locking and transactional versions
show linear speedup in all configurations because there is very little contention between warehouse threads. However,
the locking version is slightly slower in all cases because it must still pay the locking overhead to protect itself from
the 1% chance of an inter-warehouse order. Most importantly, the transactional version of SPECjbb2000 did not
need any manual changes to achieve these results; automatically changing synchronized blocks to transactions and
committing on Object.wait() was sufficient.

Java Grande
Java Grande provides a representative set of multithreaded kernels and applications. These benchmarks are often

Java versions of benchmarks available in C or Fortran from suites such as SPEC CPU, SPLASH-2, and Linpack. We
ran with the input sizes shown in Table 4.

The next five parts of Fig. 11 show the results from the Java Grande section 2 kernel programs. These highly-
tuned kernels show comparable scaling when run with transactions. The transactional versions of Series and
SparseMatmult initially are slightly slower because of commit overhead, but as the number of threads increases,
lock overhead becomes a factor for the version with locks. Transactions and locks perform equally well on LUFact



B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129 125

Fig. 11. SPECjbb2000 and Java Grande benchmark results between 2 and 16 CPUs. Series, SparseMatmult, LUFact, Crypt, SOR are Java
Grande section 2 kernels. MolDyn, MonteCarlo, RayTracer are Java Grande section 3 applications.



126 B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129

and Crypt, with lock overhead and violations having comparable cost as threads are added. The transactional version
of SOR has similar scaling to the lock-based version, with only minimal relative slowdown due to violations.

The final three parts of Fig. 11 show the results from the Java Grande section 3 application programs. MolDyn has
limited scalability for both locks and transactions, with lock overhead being slightly less performance limiting than
time lost to violations. MonteCarlo exhibits scaling with both locks and transactions, but similar to TestHistogram,
transactions have better absolute performance because of the overhead cost of locking. RayTracer is similar to the
kernels Series and SparseMatmult, with locks performing better with fewer processors and transactions performing
better as the number of threads is increased.

Three Java Grande benchmarks, LUFact, MolDyn, RayTracer, use a common TournamentBarrier class that
did not use synchronized blocks but instead volatile variables. Each thread that enters the barrier performs a
volatile write to indicate its progress and then busy waits to continue. Without our transactional interpretation of
volatile, this write is not necessarily visible to other threads, and the usual result is that all threads loop forever,
believing they are the only one to have reached the barrier. SOR had a similar usage of volatile variables that also
worked correctly with our transactional rules.

5. Related work

Recent transactional hardware proposals build on earlier hardware transactional memory work as well as thread-
level speculation (TLS). Java programming with transactions builds on earlier work on speculating through locks and
transactional memory in general.

5.1. Hardware transactional memory

Knight first proposed using hardware to detect data races in the parallel execution of implicit transactions found
in mostly functional programming languages such as Lisp [36]. Herlihy and Moss proposed transactional memory
as a generalized version of load-linked and store-conditional, meant for replacing short critical sections [7]. Recent
proposals such as TCC, UTM, and VTM have relieved earlier data size restrictions on transactions, allowing the
development of continuous transactional models [12–14]. Thread-level Speculation (TLS) uses hardware support to
allow speculative parallelization of sequential code [37–40]. In particular, Chen and Olukotun proposed a system for
Java that allowed automatic parallelization of loops using a profile driven JIT compiler on TLS hardware [41].

From the hardware perspective, these earlier systems generally layered speculative execution on top of a
conventional cache coherence and consistency protocol. TLS systems allowed speculative threads to communicate
results to other speculative threads continuously. In contrast, TCC completely replaces the underlying coherence and
consistency protocol, and allows transactions to make their write state visible only at commit time, which should
generally make it scalable to larger numbers of processors.

From a programming model perspective, earlier hardware transactional memory systems did not allow program
control over transaction order. TLS systems allow only ordered execution [42]. TCC allows unordered and ordered
transactions, including the use of both models simultaneously.

The preemption of processors with transactional state is a general problem faced by hardware transactional memory
systems. VTM addresses this issue by allowing all of the hardware state associated with a transaction to be stored
in virtual memory, treating a context switch similar to an overflow of the hardware state. Software transactional
memory systems do not face any problems with preemption because their transactional state is already stored in virtual
memory.

5.2. Speculating through locks

Rajwar and Goodman proposed Speculative Lock Elision (SLE) [43]. SLE speculates through lock acquisition,
allowing concurrent execution using hardware support. If a data dependency is detected, all involved processors roll
back. Later, Rajwar and Goodman extended SLE to create Transactional Lock Removal (TLR) which used timestamps
to avoid rolling back all processors, giving priority to the oldest outstanding work [44].

Martı́nez and Torrellas proposed Speculative Synchronization [45] based on TLS hardware. It supports speculating
not just through locks, but also barriers and flags. These systems have the concept of a safe thread that is non-specu-
lative, and that thread has priority when data dependencies are detected, similar to TLR’s use of the oldest timestamp.



B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129 127

SLE, TLR, and Speculative Synchronization build upon conventional cache coherence and consistency, similar
to early hardware transactional memory and TLS. They do not detect runtime races outside of critical regions
like continuous transactional hardware does. TLR and Speculative Synchronization do not provide a way for the
programmer to override the forward progress guarantee to improve performance by using completely unordered
transactions in cases of load imbalance between threads.

5.3. Software transactional memory

Shavit and Touitou first proposed a software-only approach to transactional memory, but it was limited to static
transactions where the data set is known in advance, such as k-word compare-and-swap [8]. Herlihy et al. overcame
this static limitation with their dynamic software transactional memory work, which offered a Java interface through
library calls [9]. Harris and Fraser provide language support for software transactional memory, allowing existing Java
code to run as part of a transaction and providing an efficient implementation of Hoare’s conditional critical regions
(CCRs) [10]. Welc et al. provide transactional monitors in Java through JikesRVM compiler extensions, treating
Object.wait() as a thread yield without committing [46].

Unlike Shavit and Touitou, later proposals support dynamic transactional memory. Unlike Herlihy et al. Harris
and Fraser can run unmodified code within transactions. Unlike Harris and Fraser, hardware transactions can run both
Java and native code within a transaction as well support non-transactional operations within atomic regions. Unlike
Welc et al. our proposal can run code containing conditional variables such as barriers that require communication on
Object.wait().

Harris et al. later explored integrating software transactional memory with Concurrent Haskell [47]. Haskell is a
mostly functional programming language where most memory operations do not need to be part of rollback state.
Haskell’s type system identifies I/O operations as part of signatures. This allows static checking for non-transactional
operations with atomic regions. This work extends the earlier CCR work by allowing an atomic region to block on
multiple complex conditions in a composable way.

Vitek et al. have created a calculus for Transaction Featherweight Java (TFJ) to study the semantics of adding
transactions to a programming language. They provide soundness and serializability proofs for both an optimistic
concurrency model and a two-phase locking protocol [48].

The advantages of hardware transactional memory over software-only versions are performance and language
transparency. Software transactional systems encourage small critical sections because of the instruction overhead of
maintaining each transaction’s data dependencies. Also, running a program consisting entirely of transactions would
be prohibitively slow with software transactional memory. Current transactional memory systems, both hardware and
software, do not require the programmer to identify which loads and stores are to share memory. However, for software
transactional memory this requires compiler support, preventing transactional code from using mechanisms such as
JNI for calling output from non-transactional compilers and hindering reuse of existing code.

6. Conclusions

Continuous transactional models promise to simplify writing of new parallel applications, but they can also be
applied to parallelize today’s programs. We have shown that conventional Java language constructs for identifying
critical regions can be used to run these existing programs transactionally with minimal changes to applications.
We have described how a Java virtual machine can be implemented for a transactional system with minor runtime
modifications and we have demonstrated that a continuous transactional system can deliver performance equal to or
better than a lock-based implementation using the same programmer-defined critical regions. We also showed that
simple, coarse-grained transactions can perform as well as fine-grained locking, demonstrating both the potential for
simplified parallel programming and the increased performance of existing applications implemented using coarse-
grained locking. The combination of good performance on conventional Java concurrency constructs, combined with
the potential for simpler code that transactions offer, provides a foundation for easing the task of parallel software
development.



128 B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129

Acknowledgments

This research was sponsored by the Defense Advanced Research Projects Agency (DARPA) through the
Department of the Interior National Business Center under grant number NBCH104009. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency (DARPA) or the US Government.

Additional support was also available through NSF grant 0444470. Brian D. Carlstrom is supported by an Intel
Foundation Ph.D. Fellowship.

References

[1] D.W. Wall, Limits of instruction-level parallelism, in: ASPLOS-IV: Proceedings of the Fourth International Conference on Architectural
support for Programming Languages and Operating Systems, ACM Press, 1991, pp. 176–188.

[2] V. Agarwal, M.S. Hrishikesh, S.W. Keckler, D. Burger, Clock rate versus IPC: The end of the road for conventional microarchitectures, in:
Proceedings of the 27th Annual International Symposium on Computer Architecture, 2000, pp. 248–259.

[3] P. Kongetira, K. Aingaran, K. Olukotun, Niagara: A 32-way multithreaded Sparc processor, IEEE MICRO Magazine 25 (2) (2005) 21–29.
[4] R. Kalla, B. Sinharoy, J. Tendler, Simultaneous multi-threading implementation in POWER5, in: Conference Record of Hot Chips 15

Symposium, Stanford, CA, 2003.
[5] S. Kapil, UltraSparc Gemini: Dual CPU processor, in: Conference Record of Hot Chips 15 Symposium, Palo Alto, CA, 2003.
[6] The Broadcom BCM1250 Multiprocessor, Technical Report, Broadcom Corporation, April 2002.
[7] M. Herlihy, J.E.B. Moss, Transactional memory: Architectural support for lock-free data structures, in: Proceedings of the 20th International

Symposium on Computer Architecture, 1993, pp. 289–300.
[8] N. Shavit, D. Touitou, Software transactional memory, in: Proceedings of the 14th Annual ACM Symposium on Principles of Distributed

Computing, Ottawa, Canada, 1995, pp. 204–213.
[9] M. Herlihy, V. Luchangco, M. Moir, I. William, N. Scherer, Software transactional memory for dynamic-sized data structures, in: PODC ’03:

Proceedings of the Twenty-second Annual Symposium on Principles of Distributed Computing, ACM Press, New York, 2003, pp. 92–101.
[10] T. Harris, K. Fraser, Language support for lightweight transactions, in: OOPSLA ’03: Proceedings of the 18th Annual ACM SIGPLAN

Conference on Object-oriented Programing, Systems, Languages, and Applications, ACM Press, 2003, pp. 388–402.
[11] C. Blundell, E.C. Lewis, M.M.K. Martin, Deconstructing transactional semantics: The subtleties of atomicity, in: Workshop on Duplicating,

Deconstructing, and Debunking, WDDD, 2005.
[12] L. Hammond, V. Wong, M. Chen, B.D. Carlstrom, J.D. Davis, B. Hertzberg, M.K. Prabhu, H. Wijaya, C. Kozyrakis, K. Olukotun,

Transactional memory coherence and consistency, in: Proceedings of the 31st International Symposium on Computer Architecture, 2004,
pp. 102–113.

[13] C.S. Ananian, K. Asanović, B.C. Kuszmaul, C.E. Leiserson, S. Lie, Unbounded transactional memory, in: Proceedings of the 11th
International Symposium on High-Performance Computer Architecture, HPCA’05, San Franscisco, California, 2005, pp. 316–327.

[14] R. Rajwar, M. Herlihy, K. Lai, Virtualizing transactional memory, in: ISCA ’05: Proceedings of the 32nd Annual International Symposium
on Computer Architecture, IEEE Computer Society, Washington, DC, 2005, pp. 494–505.

[15] C. Flanagan, Atomicity in multithreaded software, in: Workshop on Transactional Systems, 2005.
[16] M.J. Garzarán, M. Prvulovic, J.M. Llaberı́a, V. Viñals, L. Rauchwerger, J. Torrellas, Tradeoffs in buffering memory state for thread-level

speculation in multiprocessors, in: HPCA ’03: Proceedings of the 9th International Symposium on High-Performance Computer Architecture,
IEEE Computer Society, Washington, DC, 2003, p. 191.

[17] J.E.B. Moss, Nested Transactions: An Approach to Reliable Distributed Computing, MIT Press, 1985.
[18] A. McDonald, J. Chung, B.D. Carlstrom, C. Cao Minh, H. Chafi, C. Kozyrakis, K. Olukotun, Architectural Semantics for Practical

Transactional Memory, in: Proceedings of the 33rd International Symposium on Computer Architecture, 2006.
[19] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, S. Ryu, G.L. Steele Jr., S. Tobin-Hochstadt, The Fortress Language Specification, Sun

Microsystems, 2005.
[20] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, V. Sarkar, X10: An object-oriented approach to non-

uniform cluster computing, in: OOPSLA ’05: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications, ACM Press, New York, 2005, pp. 519–538.

[21] M. Campione, K. Walrath, A. Huml, The Java Tutorial, 3rd edition, Addison-Wesley Professional, 2000.
[22] B. Sandén, Coping with Java threads, IEEE Computer 37 (4) (2004) 20–27.
[23] B.D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. Cao Minh, C. Kozyrakis, K. Olukotun, The Atomos Transactional Programming

Language, in: PLDI ’06: Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and Implementation,
ACM Press, New York, 2006.

[24] S.V. Adve, K. Gharachorloo, Shared memory consistency models: A tutorial, IEEE Computer 29 (12) (1996) 66–76.
[25] W. Pugh, The Java memory model is fatally flawed, Concurrency — Practice and Experience 12 (6) (2000) 445–455.
[26] Java Specification Request (JSR) 133: Java Memory Model and Thread Specification (September 2004), http://jcp.org/jsr/detail/133.jsp.
[27] S. Liang, Java Native Interface: Programmer’s Guide and Reference, Addison-Wesley Longman, 1999.
[28] IBM Corporation, Encina Transactional-C Programmer’s Guide and Reference for AIX, SC23-2465-02, 1994.

http://jcp.org/jsr/detail/133.jsp


B.D. Carlstrom et al. / Science of Computer Programming 63 (2006) 111–129 129

[29] B. Alpern, C.R. Attanasio, J.J. Barton, M.G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S.J. Fink, D. Grove, M. Hind, S.F. Hummel, D. Lieber,
V. Litvinov, M.F. Mergen, T. Ngo, J.R. Russell, V. Sarkar, M.J. Serrano, J.C. Shepherd, S.E. Smith, V.C. Sreedhar, H. Srinivasan, J. Whaley,
The Jalapeño virtual machine, IBM Systems Journal 39 (1) (2000) 211–238.

[30] E. Moss, T. Hosking, Nested transactional memory: Model and preliminary architecture sketches, in: OOPSLA 2005 Workshop on
Synchronization and Concurrency in Object-Oriented Languages, SCOOL, 2005.

[31] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B.D. Carlstrom, L. Hammond, C. Kozyrakis, K. Olukotun, Characterization of TCC on
chip-multiprocessors, in: PACT ’05: Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques,
IEEE Computer Society, Washington, DC, 2005, pp. 63–74.

[32] L. Hammond, B.D. Carlstrom, V. Wong, B. Hertzberg, M. Chen, C. Kozyrakis, K. Olukotun, Programming with transactional coherence and
consistency (TCC), in: ASPLOS-XI: Proceedings of the 11th International Conference on Architectural Support for Programming Languages
and Operating Systems, ACM Press, New York, 2004, pp. 1–13.

[33] Standard Performance Evaluation Corporation, SPECjbb2000 Benchmark, http://www.spec.org/jbb2000/, 2000.
[34] Java Grande Forum, Java Grande Benchmark Suite, http://www.epcc.ed.ac.uk/javagrande/, 2000.
[35] D. Lea, Package util.concurrent, http://gee.cs.oswego.edu/dl, May 2004.
[36] T. Knight, An architecture for mostly functional languages, in: LFP’86: Proceedings of the 1986 ACM Conference on LISP and Functional

Programming, ACM Press, New York, 1986, pp. 105–112.
[37] L. Hammond, B.A. Hubbert, M. Siu, M.K. Prabhu, M. Chen, K. Olukotun, The Stanford Hydra CMP, Micro IEEE 20 (2) (2000) 71–84.

doi:10.1109/40.848474.
[38] V. Krishnan, J. Torrellas, IEEE Transactions on Computers 48 (9) (1999) 866–880. doi:10.1109/12.795218.
[39] G.S. Sohi, S.E. Breach, T. Vijaykumar, Multiscalar processors, in: Proceedings of the 22nd Annual International Symposium on Computer

Architecture, 1995, pp. 414–425.
[40] J.G. Steffan, T.C. Mowry, The potential for using thread-level data speculation to facilitate automatic parallelization, in: HPCA’98:

Proceedings of the 4th International Symposium on High-Performance Computer Architecture, IEEE Computer Society, Washington, DC,
USA, 1998, p. 2.

[41] M.K. Chen, K. Olukotun, The Jrpm system for dynamically parallelizing java programs, in: Proceedings of the 30th International Symposium
on Computer Architecture, 2003, pp. 434–445.

[42] M.K. Prabhu, K. Olukotun, Using thread-level speculation to simplify manual parallelization, in: Proceedings of the Principles and Practice
of Parallel Programming, 2003, pp. 1–12.

[43] R. Rajwar, J.R. Goodman, Speculative lock elision: Enabling highly concurrent multithreaded execution, in: MICRO 34: Proceedings of the
34th Annual ACM/IEEE International Symposium on Microarchitecture, IEEE Computer Society, 2001, pp. 294–305.

[44] R. Rajwar, J.R. Goodman, Transactional lock-free execution of lock-based programs, in: ASPLOS-X: Proceedings of the 10th International
Conference on Architectural Support for Programming Languages and Operating Systems, ACM Press, New York, 2002, pp. 5–17.

[45] J.F. Martı́nez, J. Torrellas, Speculative synchronization: Applying thread-level speculation to explicitly parallel applications, in: ASPLOS-X:
Proceedings of the 10th International Conference on Architectural Support for Programming Languages and Operating Systems, ACM Press,
New York, 2002, pp. 18–29.

[46] A. Welc, S. Jagannathan, A.L. Hosking, Transactional monitors for concurrent objects, in: M. Odersky (Ed.), Proceedings of the European
Conference on Object-Oriented Programming, in: Lecture Notes in Computer Science, vol. 3086, Springer-Verlag, 2004, pp. 519–542.

[47] T. Harris, S. Marlow, S. Peyton-Jones, M. Herlihy, Composable memory transactions, in: PPoPP ’05: Proceedings of the Tenth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM Press, New York, 2005, pp. 48–60.

[48] J. Vitek, S. Jagannathan, A. Welc, A.L. Hosking, A semantic framework for designer transactions, in: D.A. Schmidt (Ed.), Proceedings of the
European Symposium on Programming, in: Lecture Notes in Computer Science, vol. 2986, Springer-Verlag, 2004, pp. 249–263.

http://www.spec.org/jbb2000/
http://www.epcc.ed.ac.uk/javagrande/
http://gee.cs.oswego.edu/dl
http://dx.doi.org/doi:10.1109/40.848474
http://dx.doi.org/doi:10.1109/12.795218

	Executing Java programs with transactional memory
	Introduction
	Continuous transactional architectures
	Running Java with transactions
	Mapping Java to transactions
	Impact of transactions on Java
	Java virtual machine and transactions
	Summary

	Performance evaluation
	Environment
	Results

	Related work
	Hardware transactional memory
	Speculating through locks
	Software transactional memory

	Conclusions
	Acknowledgments
	References


