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Efficiency Metrics for Embedded CPUsEfficiency Metrics for Embedded CPUs

� High performance

• To meet soft or hard real-time constraints
• Increasing demands from emerging applications 

� Low energy consumption

• Determines battery life-time
• Critical for portable and deeply-embedded systems

� Low code size

• Determines cost of program storage devices
– Flash, ROM, instruction RAM/caches

• A major cost component for the overall system
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Code Size TradeCode Size Trade--offsoffs

� 16-bit instructions 

• Better code size, worse performance & energy than 32-bit code 

� Selective use of 16-bit instructions

• Better code size, same performance & energy as 32-bit code

� This talk: can we improve all three simultaneously? 
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BLISS Instruction Set BLISS Instruction Set 
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� BLISS = Block-aware Instruction Set

� Explicit basic block descriptors (BBDs)

• Stored separately from instructions in the text segment
• Describe control flow and identify associated instructions 

� Execution model

• PC always points to a BBD, not to instructions
• Atomic execution of basic blocks

Instructions
Instructions

Block Descriptors

Conventional ISA BLISS ISA

Text 
Segment
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3232--bit Basic Block Descriptor Formatbit Basic Block Descriptor Format

� Type: type of terminating control-flow instruction 
• Fall-through, jump, jump register, branch, call, return 

� Offset: displacement for PC-relative branches and jumps
• Offset to target basic block descriptor

� Length: number of instruction in the basic block
• 0 to 15 instructions

� Instruction pointer: address of the first instruction in the block
• Remaining bits from TLB

� Size: indicate the encoding size of instructions in the block

• 16-bit encoding or 32-bit encoding 
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BLISS Decoupled FrontBLISS Decoupled Front--EndEnd
B
L
IS
S
 O
v
e
rv
ie
w

� BTB replaced by cache for block descriptors

� Decoupled descriptors fetch from instruction fetch
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BLISS Performance & EnergyBLISS Performance & Energy

� Higher performance

• Better branch prediction using software-defined info
– L2 stores descriptors, better use of direction predictors, tolerate 

I-cache latency, …

• I-cache prefetching using info in block descriptors

� Lower energy consumption

• Energy saved by reducing mispredicted instructions
• Judicious access to I-cache using software-define info

– Merge accesses to sequential blocks, serial tag/data access, 

read needed words only, …

� See [ISLPED’05][EUROPAR’05] for details 
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BLISS Code Size BLISS Code Size 

� Naïve code generation 

• 10-20% code size increase compared to 32-bit RISC!
• A block descriptor per 5 to 10 instructions

� Basic code size optimizations 

• All jump instruction are removed
– BBD defines both control-flow type and the offset

• Many conditional branches can be removed
– Simple condition test encoded in the producing opcode

– Branch target is provided by the block descriptor
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Block Block SubsettingSubsetting OptimizationOptimization

� Idea: duplicate descriptors but never instructions 

• Eliminate all instruction in a block if exact sequence found 
elsewhere in the binary

• Adjust instruction pointer in block descriptor
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Efficient 16Efficient 16--bit/32bit/32--bit Code Interleavingbit Code Interleaving

� MIPS16: interleaving at function-level

• JALX instruction is used to switch between functions
• But functions include both perf. critical & non-critical code

� Thumb-2, rISA: instruction-level interleaving

• A couple of instructions per switch 
• Can switch encoding at arbitrary points

� BLISS: basic block interleaving

• A block is either fully perf. critical or fully non-critical
• Descriptor indicates the encoding size for each block
• No other overhead/instructions for switch 
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Evaluation SummaryEvaluation Summary
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Basic-Optimizations Block-Subset 32-16 Blocks Block-Subset + 32-16 Blocks
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� Up to 60% average compression ratio

• For mediabench applications 

� Performance & energy for Xscale PXA270

• +10% performance, -20% total energy, see paper for details
• Similar results for high-end embedded CPUs 

– IBM PowerPC 750GX
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Code Size StatisticsCode Size Statistics
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BLISS Vs. Selective 16BLISS Vs. Selective 16--bit codebit code
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� BLISS achieves similar code size reduction with
• 10% performance improvement

• 21% total energy improvement
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ConclusionsConclusions
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� BLISS: a block-aware instruction set

• Defines basic block descriptors separate from instructions

• Expressive ISA to communicate software info and hints

� Enabled code optimizations

• Eliminate redundant jump and branch instructions

• Remove blocks which appear elsewhere in the code

• Interleaving 16-bit & 32-bit code at basic-block level without overhead

� Improved code size and energy consumption and performance:

• 40% code size reduction

• 10% performance improvement

• 21% reduction in total energy consumption


