
B
L
I
S
S

Simultaneously Improving

Code Size, Performance, & Energy

in Embedded Processors

Ahmad Zmily and Christos Kozyrakis

Electrical Engineering Department

Stanford University

{zmily,kozyraki}@stanford.edu

2C. Kozyrakis, 3/2006

Efficiency Metrics for Embedded CPUsEfficiency Metrics for Embedded CPUs

� High performance

• To meet soft or hard real-time constraints
• Increasing demands from emerging applications

� Low energy consumption

• Determines battery life-time
• Critical for portable and deeply-embedded systems

� Low code size

• Determines cost of program storage devices
– Flash, ROM, instruction RAM/caches

• A major cost component for the overall system

M
o
ti
v
a
ti
o
n

3C. Kozyrakis, 3/2006

Code Size TradeCode Size Trade--offsoffs

� 16-bit instructions

• Better code size, worse performance & energy than 32-bit code

� Selective use of 16-bit instructions

• Better code size, same performance & energy as 32-bit code

� This talk: can we improve all three simultaneously?

M
o
ti
v
a
ti
o
n

40%

60%

80%

100%

120%

Code Size Execution Time Total Energy

32b Code 16b Code 16b/32b Code

4C. Kozyrakis, 3/2006

BLISS Instruction Set BLISS Instruction Set
B
L
IS
S
 O
v
e
rv
ie
w

� BLISS = Block-aware Instruction Set

� Explicit basic block descriptors (BBDs)

• Stored separately from instructions in the text segment
• Describe control flow and identify associated instructions

� Execution model

• PC always points to a BBD, not to instructions
• Atomic execution of basic blocks

Instructions
Instructions

Block Descriptors

Conventional ISA BLISS ISA

Text
Segment

5C. Kozyrakis, 3/2006

3232--bit Basic Block Descriptor Formatbit Basic Block Descriptor Format

� Type: type of terminating control-flow instruction
• Fall-through, jump, jump register, branch, call, return

� Offset: displacement for PC-relative branches and jumps
• Offset to target basic block descriptor

� Length: number of instruction in the basic block
• 0 to 15 instructions

� Instruction pointer: address of the first instruction in the block
• Remaining bits from TLB

� Size: indicate the encoding size of instructions in the block

• 16-bit encoding or 32-bit encoding

B
L
IS
S
 O
v
e
rv
ie
w

6C. Kozyrakis, 3/2006

BLISS Decoupled FrontBLISS Decoupled Front--EndEnd
B
L
IS
S
 O
v
e
rv
ie
w

� BTB replaced by cache for block descriptors

� Decoupled descriptors fetch from instruction fetch

7C. Kozyrakis, 3/2006

BLISS Performance & EnergyBLISS Performance & Energy

� Higher performance

• Better branch prediction using software-defined info
– L2 stores descriptors, better use of direction predictors, tolerate

I-cache latency, …

• I-cache prefetching using info in block descriptors

� Lower energy consumption

• Energy saved by reducing mispredicted instructions
• Judicious access to I-cache using software-define info

– Merge accesses to sequential blocks, serial tag/data access,

read needed words only, …

� See [ISLPED’05][EUROPAR’05] for details

B
L
IS
S
 O
v
e
rv
ie
w

8C. Kozyrakis, 3/2006

BLISS Code Size BLISS Code Size

� Naïve code generation

• 10-20% code size increase compared to 32-bit RISC!
• A block descriptor per 5 to 10 instructions

� Basic code size optimizations

• All jump instruction are removed
– BBD defines both control-flow type and the offset

• Many conditional branches can be removed
– Simple condition test encoded in the producing opcode

– Branch target is provided by the block descriptor

B
L
IS
S
 C
o
d
e
 S
iz
e

9C. Kozyrakis, 3/2006

Block Block SubsettingSubsetting OptimizationOptimization

� Idea: duplicate descriptors but never instructions

• Eliminate all instruction in a block if exact sequence found
elsewhere in the binary

• Adjust instruction pointer in block descriptor

B
L
IS
S
 C
o
d
e
 S
iz
e

10C. Kozyrakis, 3/2006

Efficient 16Efficient 16--bit/32bit/32--bit Code Interleavingbit Code Interleaving

� MIPS16: interleaving at function-level

• JALX instruction is used to switch between functions
• But functions include both perf. critical & non-critical code

� Thumb-2, rISA: instruction-level interleaving

• A couple of instructions per switch
• Can switch encoding at arbitrary points

� BLISS: basic block interleaving

• A block is either fully perf. critical or fully non-critical
• Descriptor indicates the encoding size for each block
• No other overhead/instructions for switch

B
L
IS
S
 C
o
d
e
 S
iz
e

11C. Kozyrakis, 3/2006

Evaluation SummaryEvaluation Summary

40%

60%

80%

100%

120%

adpcm epic g721 gsm jpeg mesa mpeg pegwit pgp rasta Average

C
o
m
p
re
s
s
io
n
 R
a
ti
o

Basic-Optimizations Block-Subset 32-16 Blocks Block-Subset + 32-16 Blocks

E
v
a
lu
a
ti
o
n

� Up to 60% average compression ratio

• For mediabench applications

� Performance & energy for Xscale PXA270

• +10% performance, -20% total energy, see paper for details
• Similar results for high-end embedded CPUs

– IBM PowerPC 750GX

12C. Kozyrakis, 3/2006

Code Size StatisticsCode Size Statistics
E
v
a
lu
a
ti
o
n

104096%191911378810628226rasta

166695%52294094273574pegwit

182095%689565024390104mpeg2.enc

124296%51685128351477mpeg2.dec

630595%366282405416692430mesa

132296%803366094535109jpeg

94894%44834409286669gsm

75093%30152942192042g721

82396%47714345280864epic

73094%25362607167136adpcm

Number of

extra

inst

Added

% inst

Converted

to 16-bit

Inst.

eliminated
BB

J/B inst.

Removed

Code Size

(kb)

Selective

16/32 Blocks

Block

Subset

BLISS basic

Optimization
MIPS32

Benchmark

13C. Kozyrakis, 3/2006

BLISS Vs. Selective 16BLISS Vs. Selective 16--bit codebit code

40%

60%

80%

100%

120%

Code Size Execution Time Total Energy

E
ff
ic
ie
n
c
y

Selective 16-bit code BLISS code

E
v
a
lu
a
ti
o
n

� BLISS achieves similar code size reduction with
• 10% performance improvement

• 21% total energy improvement

14C. Kozyrakis, 3/2006

ConclusionsConclusions
C
o
n
c
lu
s
io
n
s

� BLISS: a block-aware instruction set

• Defines basic block descriptors separate from instructions

• Expressive ISA to communicate software info and hints

� Enabled code optimizations

• Eliminate redundant jump and branch instructions

• Remove blocks which appear elsewhere in the code

• Interleaving 16-bit & 32-bit code at basic-block level without overhead

� Improved code size and energy consumption and performance:

• 40% code size reduction

• 10% performance improvement

• 21% reduction in total energy consumption

