
Simultaneously Improving Code Size, Performance, and Energy
in Embedded Processors

Ahmad Zmily and Christos Kozyrakis
Electrical Engineering Department, Stanford University

zmily@stanford.edu, christos@ee.stanford.edu

Abstract

Code size and energy consumption are critical design
concerns for embedded processors as they determine the
cost of the overall system. Techniques such as reduced
length instruction sets lead to significant code size savings
but also introduce performance and energy consumption
impediments such as additional dynamic instructions or de-
compression latency. In this paper, we show that a block-
aware instruction set (BLISS) which stores basic block de-
scriptors in addition to and separately from the actual in-
structions in the program allows embedded processors to
achieve significant improvements in all three metrics: re-
duced code size and improved performance and lower en-
ergy consumption.

1 Introduction
Code density and energy consumption are critical effi-

ciency metrics for embedded processors. Code size deter-
mines the amount and cost of on-chip or off-chip memory
necessary for program storage. Instruction memory is often
as expensive as the processor itself. Energy consumption
dictates if the processor can be used in portable or deeply
embedded systems for which battery size and lifetime are
vital parameters. However, the big challenge with embed-
ded processors is that code density and energy efficiency
must be achieved in addition to high performance. Demand-
ing applications such as image, voice, and video process-
ing are increasingly common in modern embedded systems.
Hence, high performance embedded processors are neces-
sary to provide programmable support for the current and
future demanding applications without the need for expen-
sive and inflexible custom logic [19].

An effective technique for code size reduction is the
use of short instruction sets such as the 16-bit MIPS-16 or
Thumb-2 [10, 17]. However, a short instruction format im-
plies access to a limited set of registers, limited number of
opcodes, and a very short immediate and offset field. These
limitations lead to an increased number of dynamic instruc-

40%

60%

80%

100%

120%

Code Size Execution Time Total Energy

E
ffi

ci
en

cy

32-bit code 16-bit code Selective 16-bit code

Figure 1: Code size, execution time, and total energy consumption
for 32-bit, 16-bit, and selective 16-bit executables for a processor
similar to Intel’s XScale PXA270 processor running the Media-
Bench benchmarks. Lower bars present better results.

tions and result in significant performance losses. Figure 1
shows the impact of using a 16-bit ISA on the average code
size, execution time, and energy consumption for a simple
embedded processor like the XScale PXA270 running the
MediaBench applications. The 16-bit instructions lead to
41% code size savings at the cost of 11% and 13% higher
execution time and energy consumption. It is possible to re-
cover the performance and energy overhead by selectively
using 16-bit instructions only for non-critical sections of the
code using a few overhead instructions to specify switches
between the two formats [6, 11]. As shown in Figure 1,
selective use of short instructions maintains the code size
savings and restores the performance and energy consump-
tion of the original, 32-bit code.

This paper examines the use of a block-aware instruction
set (BLISS) to improve all three efficiency metrics for em-
bedded processors at the same time: smaller code size and
better performance and lower energy consumption. BLISS
defines basic block descriptors in addition to and separately
from the actual instructions in each program [21, 22]. A de-
scriptor provides the type of the control-flow operation that
terminates the basic block, its potential target, the number of
instructions in the block, and a pointer to the actual instruc-
tions. Even though it seems counter-intuitive, the use of
additional block descriptors leads to significant reductions

Size

1

Length

4

Offset

9

Type

4

Instruction Pointer

14

Type
 : Basic Block type (type of terminating branch):

 - FT, B, J, JAL, JR, JALR, RET, LOOP

Offset:
 displacement for PC-relative branches and jumps.

Length:
 number of instructions in the basic block (0..15)

Instruction pointer:
 address of the 1st instruction in the block

 bits [15:2]. bits [31:16] are stored in the TLB

Size :
 f
 lag to indicate the size of instructions in the

 block (16-bit or 32-bit)

Figure 2: The 32-bit basic block descriptor format in BLISS.

in the code size. First, we can easily remove all instructions
in a basic block if the same sequence is present elsewhere in
the code. Correct execution is facilitated by adjusting the in-
struction pointer in the basic block descriptor to point to the
unique location in the binary for that instruction sequence.
Second, we can aggressively interleave 16-bit and 32-bit in-
structions at basic-block boundaries without the overhead
of additional instructions for switching between 16-bit and
32-bit modes. The block descriptors identify if the asso-
ciated instructions use the short or long instruction format.
In previous work we have shown the performance and en-
ergy advantages of BLISS [21, 22]. In this paper, we show
that BLISS also enables significant code size optimizations
without compromising its performance and energy bene-
fits. We demonstrate that the code size optimizations allow
BLISS to reach a compression ratio of 60% (40% reduction
in code size) over a conventional 32-bit instruction set with
a 10% average performance and 21% total energy improve-
ments. The significant performance and energy improve-
ments in addition to the code size savings allow BLISS to
compare favorably to conventional techniques for selective
use of 16-bit instructions.

2 BLISS Overview
Our proposal is based on a block-aware instruction set

(BLISS) that explicitly describes basic blocks [21]. BLISS
stores the definitions for basic blocks in addition to and sep-
arately from the ordinary instructions they include. The
code segment for a program is divided in two distinct sec-
tions. The first section contains descriptors that define the
type and boundaries of blocks, while the second section lists
the actual instructions in each block.

Figure 2 presents the 32-bit format of a basic block de-
scriptor (BBD). Each BBD defines the type of the control-
flow operation that terminates the block. The BBD also in-
cludes an offset field to be used for blocks ending with a
branch or a jump with PC-relative addressing. The actual
instructions in the basic block are identified by the pointer
to the first instruction and the length field. The last BBD
field indicates if the actual instructions in the block use 16-
bit or 32-bit encoding. With BLISS, there is a single pro-

Back-end

pipeline

I-Cache

Pipelined

BB-Cache

RAS

Predictor

call return target

basic block target

branch type

BBD

mipredicted branch target

L2 Cache

i
-

c

a

c

h
e

m

i
s

s

BBQ

D-Cache

I
-

c

a

c

h

e

p

r
e

f
e

t
c

h

BB-cache

misses

Figure 3: A decoupled front-end processor based on the BLISS
ISA.

gram counter and it only points within the code segment
for BBDs. The execution of all instructions associated with
each descriptor updates the PC so that it points to another
descriptor (sequential or branch target). Precise exceptions
are supported similar to [16].

The BLISS ISA suggests a front-end that fetches BBDs
and the associated instructions in a decoupled manner. Fig-
ure 3 presents a BLISS-based front-end that replaces branch
target buffer (BTB) with a BB-cache that caches the block
descriptors in programs [21]. The BLISS front-end opera-
tion is simple. On every cycle, the BB-cache is accessed
using the PC. On a miss, the front-end stalls until the miss-
ing descriptor is retrieved from the memory hierarchy (L2-
cache). On a hit, the BBD and its predicted direction/target
are pushed in the basic block queue (BBQ). The predicted
PC is used to access the BB-cache in the following cycle.
I-cache accesses use the instruction pointer, length and size
fields in the descriptors available in the BBQ.

The BLISS front-end allows for several performance
optimizations[21]. The contents of the BBQ provide an
early view into the instruction address stream and can be
used for instruction prefetching that hides the latency of I-
cache misses. The BBQ decouples control-flow prediction
from instruction fetching. Multi-cycle latency for a large
I-cache no longer affects prediction accuracy, as the vital
information for speculation is included in basic-block de-
scriptors available through the BB-cache. Since the PC in
the BLISS ISA always points to basic block descriptors (i.e.
a control-flow instruction), the predictor is only used and
trained for PCs that correspond to branches which reduces
interference and accelerates training in the predictor.

The improved control-flow prediction accuracy reduces
the energy wasted by mispredicted instructions. Moreover,
BLISS allows for energy optimizations in the processor
front-end [22]. Each basic block defines exactly the number
of instructions needed from the I-cache. Using segmented
word lines for the data portion of the cache, we can fetch the
necessary words while activating only the necessary sense-
amplifiers in each case. We can also merge the instruction

accesses for sequential blocks in the BBQ that hit in the
same cache line, in order to save decoding and tag access
energy. Finally, the branch predictor is only accessed after
the block descriptor is decoded, hence predictor accesses
for fall-through or jump blocks can be eliminated.

3 Code Size Optimizations
Naive translation of a RISC binary such as MIPS-32 to

the corresponding BLISS executable leads to larger code
size due to the addition of block descriptors. With five in-
structions per block on the average, the code size increase
is 20%. Nevertheless, BLISS allows for three types of code
size optimizations that eliminate this handicap and lead to
significant code size savings over the original.

3.1 Basic Optimizations

Basic code size optimizations target redundant jump and
branch instructions. These optimizations are unique to
BLISS. All jump instructions can be removed as they are
redundant; the BBD defines both the control-flow type and
the offset. Moreover, certain conditional branch instructions
can be eliminated if they perform a simple test (equal/not
equal to zero) on a register value produced within the same
basic block. We encode the simple condition test in the op-
code of the producing instruction which is typically a sim-
ple integer arithmetic operation (add or sub). Note that the
branch target is provided by the BBD and does not need to
be provided by any regular instruction.

3.2 Block Subsetting

BLISS facilitates the removal of repeated sequences of
instructions [5]. All instructions in a basic block can be
eliminated, if the exact sequence of the instructions can be
found elsewhere in the binary. We maintain the separate de-
scriptor for the block but change its instruction pointer to
point to the unique location in the binary for that instruc-
tion sequence. We refer to this optimization as Block Sub-
setting. Block subsetting leads to significant code size im-
provements because programs frequently include repeated
code patterns. Moreover, the compiler generates repeated
patterns for tasks like function setup, stack handling, and
loop setup. By removing jump and branch instructions,
the basic code size optimizations expose more repeated in-
struction sequences that block subsetting can eliminate. In-
struction similarity is also improved because BLISS stores
branch offsets in the BBDs and not in regular instruc-
tions.

Block subsetting can affect performance both ways by
interfering with the I-cache hit rate. It can reduce the hit
rate as it decreases spatial locality in instruction references.
Two sequential basic blocks may now point to instruction
sequences in non-sequential locations. However, the BLISS
front-end can tolerate higher I-cache miss rates as it al-
lows for effective prefetching using information in the basic

block descriptors (see Section 2). Block subsetting can also
improve cache performance as it reduces the cache capacity
wasted on repeated sequences.

3.3 Block-level Interleaving of 16/32-bit Code

Interleaving 16-bit and 32-bit instruction formats can
lead to good code compression without performance loss.
MIPS-16 allows mixing of 16-bit and 32-bit instructions
at the function-level granularity. A special JALX instruc-
tion is used to switch between functions with 16-bit and
32-bit instructions. However, function-level granularity is
restrictive as many functions contain both performance crit-
ical and non-critical code. Alternatively, one can interleave
16-bit and 32-bit code at instruction granularity [6, 11, 17].
Special instructions are still necessary to switch between the
16 and 32-bit sections, hence there is an overhead for each
switch.

BLISS provides a flexible mechanism for interleaving
16-bit and 32-bit code at the granularity of basic blocks.
This is significantly better than the function-level granular-
ity in MIPS-16. It is also as flexible as the instruction-level
granularity because either all instructions in a basic block
are frequently executed (performance critical) or none of
them is. The last field of the basic block descriptor provides
a flag to specify if the block contains 16-bit or 32-bit in-
structions (see Figure 2). No new instructions are required
to specify the switch between the 16-bit and 32-bit modes.
Hence, frequent switches between the two modes incur no
additional runtime penalty.

4 Methodology
Table 1 summarizes the key architectural parameters

used for evaluation which is modeled after the Intel XS-
cale PXA270 [8]. We have also performed detailed experi-
ments for a high-end embedded core comparable to the IBM
PowerPC 750GX [7] and the achieved results are consistent.
For BLISS, we split the baseline I-cache capacity between
regular instructions (3/4 for BLISS I-cache) and block de-
scriptors (1/4 for BB-cache). The smaller BLISS I-cache
does not incur more misses as 17% of the original 32-bit in-
structions are eliminated from the BLISS code by the sim-
ple code size optimizations. We fully model all contention
for the L2-cache bandwidth between BB-cache misses and
I-cache or D-cache misses.

Our simulation framework is based on the Sim-
plescalar/PISA 3.0 toolset [4], which we modified to add
the BLISS front-end model. For energy measurements, we
use the Wattch framework with the cc3 power model [3].
Energy consumption was calculated for a 0.10 � m process
with a 1.1V power supply. The reported Total Energy in-
cludes all the processor components (front-end, execution
core, and all caches). We study 10 MediaBench benchmarks
[13] compiled at the -O2 optimization level using gcc and
simulated to completion.

XScale PXA270
Base BLISS

Fetch Width 1 inst/cycle 1 BB/cycle
BTB 32-entry, 4-way –
BB-cache 8 KBytes, 4-way

– 32B Blocks , 1-cycle access
I-cache 32 KBytes, 32-way 24 KBytes, 24-way

32B Blocks, 2-cycle access 32B Blocks, 2-cycle access
BBQ – 4 entries
Execution single-issue, in-order with 1 INT & 1 FP unit
Predictor 256-entry bimod with 8 entry RAS
IQ/RUU/LSQ 16/32/32 entries
D-cache 32 KBytes, 4-way, 32B blocks, 1 port, 2-cycle access
L2-cache 256 KBytes, 4-way, 64B blocks, 1 port, 5-cycle access
Main memory 30-cycle access

Table 1: The microarchitecture parameters for the simulations.

Our study uses a BLISS version of the MIPS ISA. The
BLISS executables are generated from MIPS binaries using
a static binary translator, which can handle arbitrary pro-
grams from high-level languages. BLISS executables could
also be generated using a dynamic compilation framework
[1]. We perform the basic code size optimizations during
the base translation. Block subsetting is performed in an
additional pass over the BLISS code. If all of the instruc-
tions of a basic-block appear elsewhere in the code stream,
the instructions are eliminated and the descriptor pointer is
updated. Although instruction rescheduling and register re-
allocation might help in identifying additional repetitions
[5], they are not considered in this study.

To determine which basic blocks will use 16-bit encod-
ing for their instructions, we employ the static profitability-
based heuristic proposed in [6]. The heuristic makes the
trade-off between increased register pressure and increased
code size. Instructions in 16-bit format can only access 8
registers and may lead to performance loss due to register
spilling. The heuristic tries to achieve similar code size re-
duction to what is possible with exclusive use of 16-bit in-
structions without impacting performance.

5 Evaluation
This section presents the code size, performance, and en-

ergy evaluation of BLISS.

5.1 Code Size

The top graph of Figure 4 presents the compression ra-
tio achieved for the different BLISS executables compared
to the MIPS-32 code size. Compression ratio is defined as
the percentage of the compressed code size over the orig-
inal code size with 32-bit instructions. Lower ratio means
smaller code size.

Direct translation with basic-optimizations (Basic-
Optimizations bar) of MIPS-32 code leads to an increase
in code size with a 106% average compression ratio. Block
subsetting (Block-Subset bar) yields an average compres-

Benchmark MIPS32 BLISS basic Block Interleaving
Optimization Subsetting 16/32 Blocks

Code Size # BBs J/B Inst. # Inst. % of Inst. Extra
(KB) removed eliminated 16-bit Inst.

adpcm 36 2607 1671 2536 94% 730
epic 64 4345 2808 4771 96% 823
g721 42 2942 1920 3015 93% 750
gsm 69 4409 2866 4483 94% 948
jpeg 109 6609 4535 8033 96% 1322
mesa 430 24054 16692 36628 95% 6305
mpeg2.dec 77 5128 3514 5168 96% 1242
mpeg2.enc 104 6502 4390 6895 95% 1820
pegwit 74 4094 2735 5229 95% 1666
pgp 201 14273 10582 14889 96% 1242
rasta 226 13788 10628 19191 96% 1040

Table 2: Statistics for code size optimizations.

sion ratio of 77%. Mixing 16- and 32-bit instruction sets
makes the BLISS executables 29% less than the MIPS-32
code (71% compression ratio). Combining the two opti-
mizations leads to 60% compression ratio. Note that when
the two optimizations are enabled, the individual reductions
in code size do not add up. This is due to two reasons. First,
block subsetting is only performed within the blocks of the
same instruction size: 16-bit instruction blocks can only be
considered for block subsetting with other 16-bit blocks and
the same applies to 32-bit blocks. Hence, the opportunity
for removing repeated sequences is less. Second, the sav-
ing from eliminating 16-bit instructions is half the saving
from eliminating 32-bit instructions. Table 2 presents ad-
ditional detailed statistics on the code size optimizations
studied. Extra instructions are required when interleaving
16 and 32-bit blocks due to register spilling as Instructions
in 16-bit format can only access 8 registers.

5.2 Performance Analysis

The middle graph of Figure 4 compares the percentage
of IPC improvement achieved using the different BLISS
executables for the XScale processor configurations over
the base design. The original BLISS with basic optimiza-
tions provides an 11% average IPC improvement over the
base design. BLISS provides very similar IPC improve-
ments even with block subsetting. The additional I-cache
misses due to reduced instruction locality are well toler-
ated through prefetching using the contents of the BBQ.
The elimination of repeated instruction sequences allows
for more unique instructions to fit in the I-cache at any
point in time. Hence, certain applications observe an overall
higher I-cache hit rate.

With interleaved 16-bit and 32-bit code, BLISS achieves
a 10% average IPC improvement over the base. Two fac-
tors contribute to the change in performance gains. With
16-bit encoding, twice as many instructions can fit in the I-
cache, which leads to lower miss rate. However, 16-bit en-
coding introduces additional dynamic instructions to handle

40%

60%

80%

100%

120%

adpcm epic g721 gsm jpeg mesa mpeg pegwit pgp rasta Average

Co
m

pr
es

sio
n

Ra
tio

Basic-Optimizations Block-Subset 32-16 Blocks Block-Subset + 32-16 Blocks

0%

5%

10%

15%

20%

adpcm epic g721 gsm jpeg mesa mpeg pegwit pgp rasta Average

%
 IP

C
Im

pr
ov

em
en

t

0%

5%

10%

15%

20%

25%

30%

adpcm epic g721 gsm jpeg mesa mpeg pegwit pgp rasta Average

%
En

erg
y i

mp
rov

em
en

t

Figure 4: Evaluation of the XScale processor configuration for the different BLISS binaries over the base design.

register spilling and long offsets for load and store instruc-
tions. On average, 1.4% more instructions are executed
compared to the original code. The net effect is a small
degradation in average performance compared to the origi-
nal BLISS. Nevertheless, for benchmarks like mesa which
stresses the I-cache capacity, the net effect is a small per-
formance improvement. Using block subsetting in addition
to interleaved 16-bit/32-bit instructions results in a similar
performance as the one observed when the optimization is
enabled on the original BLISS code.

5.3 Energy Analysis

The bottom graph of Figure 4 compares the percent-
age of total energy improvement achieved using the differ-
ent BLISS executables over the base design. BLISS offers
a 23% total energy advantage over the base design. The
BLISS advantage is due a number of factors: reduced en-
ergy spent on mispredicted instructions, selective word ac-
cess in the I-cache, merging of I-cache accesses for sequen-
tial blocks, and judicious access to the branch predictor.
16-bit encodings introduce some energy consumption due
to the additional instructions. Nevertheless, BLISS with
mixed instruction widths and subsetting provides a 21% to-
tal energy advantage over the base design.

5.4 Comparison to Selective Use of 16-bit Code

Figure 5 compares BLISS with block subsetting and se-
lective use of 16-bit blocks to selective use of 16-bit in-
structions with a conventional ISA like Thumb-2 and rISA
(Sel16) [17, 6, 11]. Note that the same profitability heuristic

40%

60%

80%

100%

120%

Code Size Execution Time Total Energy

E
ffi

ci
en

cy

Selective 16-bit code
BLISS code

Figure 5: Average Code size, execution time, and total energy con-
sumption for selective 16-bit and BLISS (with block-subset and
32/16 blocks) executables for the XScale processor configuration
over the base. Lower bars present better results.

is used with both ISAs to select which instructions or blocks
to encode with 16 bits. The base XScale configuration with
the full-sized I-cache is used for Sel16.

By interleaving 16-bit and 32-bit encodings at instruc-
tion granularity, Sel16 achieves a 39% code size reduction.
Nevertheless, the extra dynamic instructions for switching
lead to a small performance and energy degradation. On the
other hand, BLISS provides similar code size reduction and
at the same time achieves 10% performance and 21% total
energy advantages. BLISS overcomes the code size handi-
cap of the extra block descriptors by allowing an additional
code size optimization over Sel16 (block subsetting). Its
performance and energy advantages are due to the microar-
chitecture optimization enabled with the BLISS decoupled
front-end and the lack of special instructions for switching

between 16-bit and 32-bit code. Overall, BLISS improves
upon Sel16 by offering similar code density at superior per-
formance and energy consumption.

6 Related Work

Many code size reduction techniques have been pro-
posed and widely used in embedded systems [2]. Most
techniques store the compressed program code in memory
and decompression happens on I-cache misses [20, 15, 9]
or inside the processor [14]. Compression is typically dic-
tionary based. Such techniques reduce memory footprint
and the off-chip bandwidth requirements for instruction ac-
cesses. When decompression occurs in the core, additional
latency is introduced for instruction execution. When de-
compression occurs on cache refills, additional pressure is
placed on the I-cache capacity. BLISS reduces code size,
places no additional pressure on I-cache capacity, and im-
proves on execution time. BLISS can be combined with a
dictionary compression scheme behind the I-cache for fur-
ther code size improvements.

Cooper proposed a compiler framework for discovering
and eliminating repeated instruction sequences [5]. The
echo instruction has been proposed to facilitate elimina-
tion of such redundancies [12]. An echo instruction is used
in the place of repeated sequences and points back to the
unique location for that code. Using echo instructions, 84%
compression ratio is reported in [12]. BLISS facilitates re-
dundancy elimination with block subsetting, which on its
own leads to a 77% compression ratio. Moreover, BLISS al-
lows for significant performance improvements in addition
to code compression, which is not the case with previous
proposals.

The BLISS instruction set builds on the block-structured
instruction set that defines block boundaries within the reg-
ular instruction stream [16]. Decoupled processor front-
ends for ordinary ISAs have been proposed and analyzed in
[18]. The advantages that BLISS introduces over this work
are analyzed in [21, 22].

7 Conclusions

This paper evaluated the use of a block-aware instruc-
tion set (BLISS) to achieve code size, performance, and en-
ergy improvements for embedded processors. The BLISS
ISA defines basic block descriptors in addition to and sep-
arately from the actual instructions. It enables code size
optimizations by removing redundant sequences of instruc-
tions across basic blocks and by allowing a fine-grain inter-
leaving of 16-bit and 32-bit instructions without overhead
instructions. We showed that BLISS allows for 40% code
size reduction over a conventional RISC ISA and simulta-
neously achieves 10% performance and 21% total energy
improvements. Hence, BLISS improves concurrently the
performance and cost of embedded systems.

References
[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Trans-

parent Dynamic Optimization System. In Conference on
Programming Language Design and Implementation, 2000.

[2] A. Beszedes et al. Survey of Code-Size Reduction Methods.
ACM Comput. Surv., 35(3), 2003.

[3] D. Brooks, V. Tiwari, , and M. Martonosi. Wattch: A Frame-
work for Architectural-Level Power Analysis and Optimiza-
tions. In Intl. Symposium on Computer Architecture, 2000.

[4] D. Burger and M. Austin. Simplescalar Tool Set, Version 2.0.
Technical Report CS-TR-97-1342, University of Wisconsin,
Madison, 1997.

[5] K. Cooper and N. McIntosh. Enhanced Code Compression
for Embedded RISC Processors. In Conference on Program-
ming Language Design and Implementation, 1999.

[6] A. Halambi et al. An Efficient Compiler Technique for Code
Size Reduction Using Reduced Bit-Width ISAs. In Confer-
ence on Design, automation and test in Europe, 2002.

[7] IBM Corporation. IBM PowerPC 750GX RISC Micropro-
cessor User’s Manual, 2004.

[8] Intel Corporation. Intel PXA27x Processor Family Devel-
oper’s Manual, 2004.

[9] M. B. Jr. and R. Smith. Enhanced Compression Techniques
to Simplify Program Decompression and Execution. In Intl.
Conference on Computer Design, 1997.

[10] K. Kissell. MIPS16: High-Density MIPS for the Embedded
Market. Technical report, Silicon Graphics MIPS, 1997.

[11] A. Krishnaswamy and R. Gupta. Profile Guided Selection of
ARM and Thumb Instructions. In Joint Conference on Lan-
guages, Compilers and Tools for Embedded Systems, 2002.

[12] J. Lau et al. Reducing Code Size With Echo Instructions. In
Intl. Conference on Compilers, Architecture and Synthesis
for Embedded Systems, 2003.

[13] C. Lee, M. Potkonjak, and W. Mangione-Smith. Media-
Bench: a Tool for Evaluating and Synthesizing Multimedia
and Communications systems. In Intl. Symposium on Mi-
croarchitecture, 1997.

[14] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge. Improving
Code Density Using Compression Techniques. In Intl. sym-
posium on Microarchitecture, 1997.

[15] H. Lekatsas, J. Henkal, and W. Wolf. Code Compression
for Low Power Embedded System Design. In Conference on
Design Automation, 2000.

[16] S. Melvin and Y. Patt. Enhancing Instruction Scheduling
with a Block-structured ISA. Intl. Journal on Parallel Pro-
cessing, 23(3), 1995.

[17] R. Phelan. Improving ARM Code Density and Performance.
Technical report, Advanced RISC Machines Ltd, 2003.

[18] G. Reinman, T. Austin, and C. Calder. A Scalable Front-End
Architecture for Fast Instruction Delivery. In Intl. Sympo-
sium on Computer Architecture, 1999.

[19] C. Rowen. Engineering the Complex SOC. Prentice Hall,
2004.

[20] A. Wolfe and A. Chanin. Executing Compressed Programs
on An Embedded RISC Architecture. In Intl. Symposium on
Microarchitecture, 1992.

[21] A. Zmily, E. Killian, and C. Kozyrakis. Improving Instruc-
tion Delivery with a Block-Aware ISA. In EuroPar Confer-
ence, 2005.

[22] A. Zmily and C. Kozyrakis. Energy-Efficient and High-
Performance Instruction Fetch using a BlockAware ISA.
In Intl. Symposium on Low Power Electronics and Design,
2005.

