
Heuristics for ProfileHeuristics for Profile--driven Methoddriven Method--
level Speculative Parallelizationlevel Speculative Parallelization

John Whaley and Christos Kozyrakis
Stanford University

June 15, 2005



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

1

Speculative Multithreading
• Speculatively parallelize an application

– Uses speculation to overcome ambiguous 
dependencies

– Uses hardware support to recover from 
misspeculation

– Promising technique for automatically 
extracting parallelism from programs

• Problem: Where to put the threads?



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

2

Method-Level Speculation
• Idea: Use method boundaries as 

speculative threads
– Computation is naturally partitioned into 

methods
– Execution often independent
– Well-defined interface

• Extract parallelism from irregular, 
non-numerical applications



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

3

Method-Level Speculation Example

main()
{
work_A;

foo();

work_C; // reads *q
}

foo()
{
work_B; // writes *p

}



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

4

main()
{
work_A;
foo() {
work_B; // writes *p

}
work_C; // reads *q

}

Method-Level Speculation Example



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

5

main()
{
work_A;
foo() {
work_B; // writes *p

}
work_C; // reads *q

}

work_A

foo()
work_B

work_C

Sequential execution

Method-Level Speculation Example



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

6

main()
{
work_A;
foo() {
work_B; // writes *p

}
work_C; // reads *q

}

TLS execution – no violation

work_A

foo()
work_B

work_C

overhead

fork

p!=q
No violation

Method-Level Speculation Example



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

7

main()
{
work_A;
foo() {
work_B; // writes *p

}
work_C; // reads *q

}

TLS execution – violation

work_A

foo()
work_B

work_C

overhead

fork

p=q
Violation!

overhead

work_C
(aborted)

Method-Level Speculation Example



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

8

work_A

foo()
work_B

work_C

work_A

foo()
work_B

work_C

overhead

fork

p!=q
No violation

work_A

foo()
work_B

work_C

overhead

p=q
Violation!

overhead

work_C
(aborted)

fork

Method-Level Speculation Example
Sequential TLS – no violation TLS – violation



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

9

Nested Speculation

foo()
work_A

work_B

overhead

fork

bar()
work_C

main()
{

foo() {
work_A;

}
work_B;
bar() {

work_C;
}
work_D;

}

fork

overhead

work_D

Sequences of method calls can
cause nested speculation.



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

10

This Talk: Choosing Speculation 
Points

• Which methods to speculate?
– Low chance of violation
– Not too short, not too long
– Not too many stores

• Idea: Use profile data to choose good 
speculation points
– Used for profile-driven and dynamic compiler
– Should be low-cost but accurate

• We evaluated 7 different heuristics
– ~80% effective compared to perfect oracle



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

11

Difficulties in Method-Level 
Speculation

• Method invocations can have varying 
execution times
– Too short: Doesn’t overcome speculation 

overhead
– Too long: More likely to violate or overflow, 

prevents other threads from retiring
• Return values

– Mispredicted return value causes violation



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

12

Classes of Heuristics
• Simple Heuristics

– Use only simple information, such as 
method runtime

• Single-Pass Heuristics
– More advanced information, such as 

sequence of store addresses
– Single pass through profile data

• Multi-Pass Heuristics
– Multiple passes through profile data



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

13

Classes of Heuristics
• Simple Heuristics

– Use only simple information, such as 
method runtime

• Single-Pass Heuristics
– More advanced information, such as 

sequence of store addresses
– Single pass through profile data

• Multi-Pass Heuristics
– Multiple passes through profile data



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

14

Runtime Heuristic (SI-RT)
• Speculate on all methods with:

– MIN < runtime < MAX
• Idea: Should be long enough to 

amortize overhead, but not long 
enough to violate

• Data required:
– Average runtime of each method



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

15

Store Heuristic (SI-SC)
• Speculate on all methods with:

– dynamic # of stores < MAX
• Idea: Stores cause violations, so 

speculate on methods with few stores
• Data required:

– Average dynamic store count of each 
method



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

16

Classes of Heuristics
• Simple Heuristics

– Use only simple information, such as 
method runtime

• Single-Pass Heuristics
– More advanced information, such as 

sequence of store addresses
– Single pass through profile data

• Multi-Pass Heuristics
– Multiple passes through profile data



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

17

Stalled Threads

bar()
work_A

work_B
overhead

fork

foo()
{
bar() {
work_A;

}
work_B;

}

idle

Speculative threads may stall while
waiting to become main thread.



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

18

Fork at intermediate points

bar()
work_A

work_B
overhead

fork

foo()
{
bar() {
work_A;

}
work_B;

}

Fork at an intermediate point within a method
to avoid violations and stalling



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

19

Best Speedup Heuristic (SP-SU)

• Speculate on methods with:
– predicted speedup > THRES

• Calculate predicted speedup by:

• Scan store stream backwards to find 
fork point
– Choose fork point to avoid violations and 

stalling

expected sequential run time
expected parallel run time



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

20

Most Cycles Saved Heuristic (SP-CS)

• Speculate on methods with:
– predicted cycle savings > THRES

• Calculate predicted cycle savings by:

• Place fork point such that:
– predicted probability of violation < RATIO

• Uses same information as SP-SU

sequential cycle count – parallel cycle count



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

21

Classes of Heuristics
• Simple Heuristics

– Use only simple information, such as 
method runtime

• Single-Pass Heuristics
– More advanced information, such as 

sequence of store addresses
– Single pass through profile data

• Multi-Pass Heuristics
– Multiple passes through profile data



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

22

Nested Speculation

foo()
work_A work_D

overhead

fork

bar()
work_B

overhead

foo()
work_C

idle

fork

main()
{

foo() {
work_A;
bar() {

work_B;
}
work_C;

}
work_D;

}
Effectiveness of speculation choice

depends on choices for caller methods!



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

23

Best Speedup Heuristic
with Parent Info (MP-SU)

• Iterative algorithm:
– Choose speculation with best speedup
– Readjust all callee methods to account for 

speculation in caller
– Repeat until best speedup < THRES

• Max # of iterations: depth of call 
graph



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

24

Most Cycles Saved Heuristic
with Parent Info (MP-CS)

• Iterative algorithm:
1.Choose speculation with most cycles 

saved and predicted violations < RATIO
2.Readjust all callee methods to account 

for speculation in caller
3.Repeat until most cycles saved < THRES

• Multi-pass version of SP-CS



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

25

Most Cycles Saved Heuristic
with No Nesting (MP-CSNN)

• Iterative algorithm:
– Choose speculation with most cycles 

saved and predicted violations < RATIO.
– Eliminate all callee methods from 

consideration.
– Repeat until most cycles saved < THRES.

• Disallows nested speculation to avoid 
double-counting the benefits

• Faster to compute than MP-CS



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

26

Experimental ResultsExperimental Results



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

27

Trace-Driven Simulation
• How to find the optimal parameters 

(THRES, RATIO, etc.) ?
• Parameter sweeps

– For each benchmark
•For each heuristic

– Multiple parameters for each heuristic

• For cycle-accurate simulation:
>100 CPU years?!

• Alternative: trace-driven simulation



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

28

Trace-Driven Simulation
1. Collect trace on Pentium III (3-way out-of-

order CPU, 32K L1, 256K L2)
– Record all memory accesses, enter/exit 

method events, etc.
2. Recalibrate to remove instrumentation 

overhead
3. Simulate trace on 4-way CMP hardware

– Model shared cache, speculation overheads, 
dependencies, squashing, etc.

Spot check with cycle-accurate simulator: 
Accurate within ~3%



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

29

Simulated Architecture
• Four 3-way out-of-order CPUs

– 32K L1, 256K shared L2
• Single speculative buffer per CPU
• Forking, retiring, squashing overhead: 

70 cycles each
• Speculative threads can be preempted

– Low priority speculations can be 
squashed by higher priority ones



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

30

The Oracle
• A “Perfect” Oracle

– Preanalyzes entire trace
– Makes a separate decision on every 

method invocation
– Chooses fork points to never violate
– Zero overhead for forking or retiring 

threads
• Upper-bound on performance of any 

heuristic



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

31

Benchmarks
• SpecJVM

– compress: Lempel-Ziv compression
– jack: Java parser generator
– javac: Java compiler from the JDK 1.0.2
– jess: Java expert shell system
– mpeg: Mpeg layer 3 audio decompression
– raytrace: Raytracer that works on a dinosaur scene

• SPLASH-2
– barnes: Hierarchical N-body solver
– water: Simulation of water molecules



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

32

Heuristic Parameter Tuning

1e5 1e6 1e7 1e9
1e12

1e3

1e4
1e5
1e6
1e7

1.00

1.10

1.20

1.30

1.40

1.50

1.60

Sp
ee

du
p

MAX

MIN

Runtime (SI-RT)

1e5 1e6 1e7 1e9 1e12
1e3

1e5

1e7

0

1000

2000

3000

4000

5000

6000

N
um

be
r 

of
 v

io
la

tio
ns

MAX

MIN

Runtime (SI-RT)



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

33

Heuristic Parameter Tuning
Store (SI-SC)

1.00

1.10

1.20

1.30

1.40

1.50

1e1 1e2 1e3 1e4 1e5

Threshold

Sp
ee

du
p Void only

Constant
Perfect



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

34

Heuristic Parameter Tuning
Store (SI-SC)

0

1000

2000

3000

4000

5000

1e1 1e2 1e3 1e4 1e5

Threshold

N
um

be
r 

of
 v

io
la

tio
ns

Void only
Constant
Perfect



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

35

Heuristic Parameter Tuning
Best Speedup (SP-SU)

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.001 1.01 1.1 1.2 1.4 1.6

Threshold

Sp
ee

du
p Void only

Constant
Perfect



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

36

Heuristic Parameter Tuning
Best Speedup (SP-SU)

0
50

100
150
200
250
300
350

1.001 1.01 1.1 1.2 1.4 1.6

Threshold

N
um

be
r o

f V
io

la
tio

ns

Void only
Constant
Perfect



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

37

Heuristic Parameter Tuning

0.1
0.3

0.5
0.7

0.9
1e2

1e5

1e71.00

1.10

1.20

1.30

1.40

1.50

1.60

S
pe

ed
up

RATIO
THRES

Most Cycles Saved (SP-CS)

0.1
0.3

0.5
0.7

0.9
1e2

1e5

1e70

50

100

150

200

250

300

350

Nu
m

be
r o

f v
io

la
tio

ns

RATIO
THRES

Most Cycles Saved (SP-CS)



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

38

Heuristic Parameter Tuning
Best Speedup with Parent Info (MP-SU)

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

1.001 1.01 1.1 1.2 1.4 1.6

Threshold

Sp
ee

du
p Void only

Constant
Perfect



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

39

Heuristic Parameter Tuning
Best Speedup with Parent Info (MP-SU)

0

100

200

300

400

500

1.001 1.01 1.1 1.2 1.4 1.6

Threshold

N
um

be
r o

f v
io

la
tio

ns

Void only
Constant
Perfect



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

40

Heuristic Parameter Tuning

0.1
0.3

0.5
0.7

0.9
1e2

1e5

1e71.00
1.05
1.10

1.15

1.20

1.25

1.30

1.35

1.40

S
pe

ed
up

RATIO
THRES

Most Cycles Saved with Parent Info 
(MP-CS)

0.1
0.3

0.5
0.7

0.9
1e2

1e5

1e70
50

100

150

200

250

300

350

400

Nu
m

be
r o

f v
io

la
tio

ns

RATIO
THRES

Most Cycles Saved with Parent Info 
(MP-CS)



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

41

Heuristic Parameter Tuning

0.1
0.3

0.5
0.7

0.9 1e2

1e5

1e7
1.00
1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Sp
ee

du
p

RATIO THRES

Most Cycles Saved with No Nesting 
(MP-CSNN)

0.1
0.3

0.5
0.7

0.9 1e2

1e5

1e7
0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f v
io

la
tio

ns
RATIO THRES

Most Cycles Saved with No Nesting 
(MP-CSNN)



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

42

Tuning Summary
• Runtime (SI-RT):

– MIN = 103 cycles, MAX = 107 cycles
• Store (SI-SC):

– MAX = 105 stores
• Best speedup (SP-SU, MP-SU):

– Single pass: MIN = 1.2x speedup
– Multi pass: MIN = 1.4x speedup

• Most cycles saved (SP-CS, MP-CS, MP-CSNN):
– THRES = 105 cycles saved, RATIO = 70% violation

• Return value prediction:
– Constant is within 15% of perfect value prediction



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

43

1.0

1.2

1.4

1.6

1.8

2.0

barnes compress jack javac jess mpeg raytrace water Average

Sp
ee

du
p

SI-RT SI-SC SP-SU SP-CS MP-SU MP-CS MP-CSNN Oracle

Overall Speedups



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

44

Breakdown of Speculative Threads

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

barnes compress jack javac jess mpeg raytrace water

N
or

m
al

iz
ed

 n
um

be
r o

f t
hr

ea
ds

Successful Preempted Killed



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

45

Breakdown of Execution Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

S
I-R

T
S

I-S
C

S
P

-S
U

S
P

-C
S

M
P

-S
U

M
P

-C
S

M
P

-C
S

N
N

barnes compress jack javac jess mpeg raytrace water

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

Useful Idle Wasted



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

46

Speculative Store Buffer Size

1.381.2713.020.302.570.396.4812.02MP-
CSNN

1.381.271.640.300.300.396.4812.02MP-CS

1.381.271.270.300.300.396.4812.01MP-SU

0.221.6415.290.302.570.396.480.31SP-CS

0.551.6413.020.301.080.396.488.11SP-SU

1.451.6413.020.153.510.196.4712.02SI-SC

0.201.640.760.262.050.390.180.31SI-RT

waterrtracempegjessjavacjackcompbarnes

Maximum speculative store buffer size: 16KB



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

47

Related Work
• Loop-level parallelism
• Method-level parallelism

– Warg and Stenstrom
•ICPAC’01: Limit study
•IPDPS’03: Heuristic based on runtime
•CF’05: Misspeculation prediction

• Compilers
– Multiscalar: Vijaykumar and Sohi, JPDC’99
– SpMT: Bhowmik & Chen, SPAA’02



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

48

Conclusions
• Evaluated 7 heuristics for method-

level speculation
• Take-home points:

– Method-level speculation has complex 
interactions, very hard to predict

– Single-pass heuristics do a good job:
80% of a perfect oracle

– Most important issue is the balance 
between over- and under-speculating


