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Speculative Multithreading
• Speculatively parallelize an application

– Uses speculation to overcome ambiguous 
dependencies

– Uses hardware support to recover from 
misspeculation

– Promising technique for automatically 
extracting parallelism from programs

• Problem: Where to put the threads?
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Method-Level Speculation
• Idea: Use method boundaries as 

speculative threads
– Computation is naturally partitioned into 

methods
– Execution often independent
– Well-defined interface

• Extract parallelism from irregular, 
non-numerical applications
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Method-Level Speculation Example

main()
{
work_A;

foo();

work_C; // reads *q
}

foo()
{
work_B; // writes *p

}
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main()
{
work_A;
foo() {
work_B; // writes *p

}
work_C; // reads *q

}

Method-Level Speculation Example
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main()
{
work_A;
foo() {
work_B; // writes *p

}
work_C; // reads *q

}

work_A

foo()
work_B

work_C

Sequential execution

Method-Level Speculation Example
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main()
{
work_A;
foo() {
work_B; // writes *p

}
work_C; // reads *q

}

TLS execution – no violation

work_A

foo()
work_B

work_C

overhead

fork

p!=q
No violation

Method-Level Speculation Example
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main()
{
work_A;
foo() {
work_B; // writes *p

}
work_C; // reads *q

}

TLS execution – violation

work_A

foo()
work_B

work_C

overhead

fork

p=q
Violation!

overhead

work_C
(aborted)

Method-Level Speculation Example
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work_A

foo()
work_B

work_C

work_A

foo()
work_B

work_C

overhead

fork

p!=q
No violation

work_A

foo()
work_B

work_C

overhead

p=q
Violation!

overhead

work_C
(aborted)

fork

Method-Level Speculation Example
Sequential TLS – no violation TLS – violation
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Nested Speculation

foo()
work_A

work_B

overhead

fork

bar()
work_C

main()
{

foo() {
work_A;

}
work_B;
bar() {

work_C;
}
work_D;

}

fork

overhead

work_D

Sequences of method calls can
cause nested speculation.
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This Talk: Choosing Speculation 
Points

• Which methods to speculate?
– Low chance of violation
– Not too short, not too long
– Not too many stores

• Idea: Use profile data to choose good 
speculation points
– Used for profile-driven and dynamic compiler
– Should be low-cost but accurate

• We evaluated 7 different heuristics
– ~80% effective compared to perfect oracle
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Difficulties in Method-Level 
Speculation

• Method invocations can have varying 
execution times
– Too short: Doesn’t overcome speculation 

overhead
– Too long: More likely to violate or overflow, 

prevents other threads from retiring
• Return values

– Mispredicted return value causes violation
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Classes of Heuristics
• Simple Heuristics

– Use only simple information, such as 
method runtime

• Single-Pass Heuristics
– More advanced information, such as 

sequence of store addresses
– Single pass through profile data

• Multi-Pass Heuristics
– Multiple passes through profile data
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Classes of Heuristics
• Simple Heuristics

– Use only simple information, such as 
method runtime

• Single-Pass Heuristics
– More advanced information, such as 

sequence of store addresses
– Single pass through profile data

• Multi-Pass Heuristics
– Multiple passes through profile data
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Runtime Heuristic (SI-RT)
• Speculate on all methods with:

– MIN < runtime < MAX
• Idea: Should be long enough to 

amortize overhead, but not long 
enough to violate

• Data required:
– Average runtime of each method
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Store Heuristic (SI-SC)
• Speculate on all methods with:

– dynamic # of stores < MAX
• Idea: Stores cause violations, so 

speculate on methods with few stores
• Data required:

– Average dynamic store count of each 
method
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Classes of Heuristics
• Simple Heuristics

– Use only simple information, such as 
method runtime

• Single-Pass Heuristics
– More advanced information, such as 

sequence of store addresses
– Single pass through profile data

• Multi-Pass Heuristics
– Multiple passes through profile data



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

17

Stalled Threads

bar()
work_A

work_B
overhead

fork

foo()
{
bar() {
work_A;

}
work_B;

}

idle

Speculative threads may stall while
waiting to become main thread.
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Fork at intermediate points

bar()
work_A

work_B
overhead

fork

foo()
{
bar() {
work_A;

}
work_B;

}

Fork at an intermediate point within a method
to avoid violations and stalling
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Best Speedup Heuristic (SP-SU)

• Speculate on methods with:
– predicted speedup > THRES

• Calculate predicted speedup by:

• Scan store stream backwards to find 
fork point
– Choose fork point to avoid violations and 

stalling

expected sequential run time
expected parallel run time
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Most Cycles Saved Heuristic (SP-CS)

• Speculate on methods with:
– predicted cycle savings > THRES

• Calculate predicted cycle savings by:

• Place fork point such that:
– predicted probability of violation < RATIO

• Uses same information as SP-SU

sequential cycle count – parallel cycle count
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Classes of Heuristics
• Simple Heuristics

– Use only simple information, such as 
method runtime

• Single-Pass Heuristics
– More advanced information, such as 

sequence of store addresses
– Single pass through profile data

• Multi-Pass Heuristics
– Multiple passes through profile data



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

22

Nested Speculation

foo()
work_A work_D

overhead

fork

bar()
work_B

overhead

foo()
work_C

idle

fork

main()
{

foo() {
work_A;
bar() {

work_B;
}
work_C;

}
work_D;

}
Effectiveness of speculation choice

depends on choices for caller methods!
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Best Speedup Heuristic
with Parent Info (MP-SU)

• Iterative algorithm:
– Choose speculation with best speedup
– Readjust all callee methods to account for 

speculation in caller
– Repeat until best speedup < THRES

• Max # of iterations: depth of call 
graph
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Most Cycles Saved Heuristic
with Parent Info (MP-CS)

• Iterative algorithm:
1.Choose speculation with most cycles 

saved and predicted violations < RATIO
2.Readjust all callee methods to account 

for speculation in caller
3.Repeat until most cycles saved < THRES

• Multi-pass version of SP-CS
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Most Cycles Saved Heuristic
with No Nesting (MP-CSNN)

• Iterative algorithm:
– Choose speculation with most cycles 

saved and predicted violations < RATIO.
– Eliminate all callee methods from 

consideration.
– Repeat until most cycles saved < THRES.

• Disallows nested speculation to avoid 
double-counting the benefits

• Faster to compute than MP-CS
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Experimental ResultsExperimental Results
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Trace-Driven Simulation
• How to find the optimal parameters 

(THRES, RATIO, etc.) ?
• Parameter sweeps

– For each benchmark
•For each heuristic

– Multiple parameters for each heuristic

• For cycle-accurate simulation:
>100 CPU years?!

• Alternative: trace-driven simulation
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Trace-Driven Simulation
1. Collect trace on Pentium III (3-way out-of-

order CPU, 32K L1, 256K L2)
– Record all memory accesses, enter/exit 

method events, etc.
2. Recalibrate to remove instrumentation 

overhead
3. Simulate trace on 4-way CMP hardware

– Model shared cache, speculation overheads, 
dependencies, squashing, etc.

Spot check with cycle-accurate simulator: 
Accurate within ~3%
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Simulated Architecture
• Four 3-way out-of-order CPUs

– 32K L1, 256K shared L2
• Single speculative buffer per CPU
• Forking, retiring, squashing overhead: 

70 cycles each
• Speculative threads can be preempted

– Low priority speculations can be 
squashed by higher priority ones
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The Oracle
• A “Perfect” Oracle

– Preanalyzes entire trace
– Makes a separate decision on every 

method invocation
– Chooses fork points to never violate
– Zero overhead for forking or retiring 

threads
• Upper-bound on performance of any 

heuristic
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Benchmarks
• SpecJVM

– compress: Lempel-Ziv compression
– jack: Java parser generator
– javac: Java compiler from the JDK 1.0.2
– jess: Java expert shell system
– mpeg: Mpeg layer 3 audio decompression
– raytrace: Raytracer that works on a dinosaur scene

• SPLASH-2
– barnes: Hierarchical N-body solver
– water: Simulation of water molecules
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Heuristic Parameter Tuning
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Heuristic Parameter Tuning
Store (SI-SC)
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Heuristic Parameter Tuning
Store (SI-SC)
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Heuristic Parameter Tuning
Best Speedup (SP-SU)
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Heuristic Parameter Tuning
Best Speedup (SP-SU)
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Heuristic Parameter Tuning
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Heuristic Parameter Tuning
Best Speedup with Parent Info (MP-SU)
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Heuristic Parameter Tuning
Best Speedup with Parent Info (MP-SU)
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Heuristic Parameter Tuning
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Heuristic Parameter Tuning
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Tuning Summary
• Runtime (SI-RT):

– MIN = 103 cycles, MAX = 107 cycles
• Store (SI-SC):

– MAX = 105 stores
• Best speedup (SP-SU, MP-SU):

– Single pass: MIN = 1.2x speedup
– Multi pass: MIN = 1.4x speedup

• Most cycles saved (SP-CS, MP-CS, MP-CSNN):
– THRES = 105 cycles saved, RATIO = 70% violation

• Return value prediction:
– Constant is within 15% of perfect value prediction
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Breakdown of Speculative Threads
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Breakdown of Execution Time
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Speculative Store Buffer Size

1.381.2713.020.302.570.396.4812.02MP-
CSNN

1.381.271.640.300.300.396.4812.02MP-CS

1.381.271.270.300.300.396.4812.01MP-SU

0.221.6415.290.302.570.396.480.31SP-CS

0.551.6413.020.301.080.396.488.11SP-SU

1.451.6413.020.153.510.196.4712.02SI-SC

0.201.640.760.262.050.390.180.31SI-RT

waterrtracempegjessjavacjackcompbarnes

Maximum speculative store buffer size: 16KB
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Related Work
• Loop-level parallelism
• Method-level parallelism

– Warg and Stenstrom
•ICPAC’01: Limit study
•IPDPS’03: Heuristic based on runtime
•CF’05: Misspeculation prediction

• Compilers
– Multiscalar: Vijaykumar and Sohi, JPDC’99
– SpMT: Bhowmik & Chen, SPAA’02



June 15, 2005 Heuristics for Profile-driven Method-
level Speculative Parallelization

48

Conclusions
• Evaluated 7 heuristics for method-

level speculation
• Take-home points:

– Method-level speculation has complex 
interactions, very hard to predict

– Single-pass heuristics do a good job:
80% of a perfect oracle

– Most important issue is the balance 
between over- and under-speculating


