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Motivation

� Processor front-end engine

� Performs control flow prediction & instruction fetch

� Sets upper limit for performance

– Cannot execute instructions faster than you can fetch them!

� Front-end detractors 

� Control-flow mispredictions that lead to pipeline flushing 

� Instruction cache misses

� Multi-cycle instruction cache accesses
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BLISS

� A block-aware instruction set architecture

� Allows software to help with hardware challenges 

� Decouples control-flow prediction from instruction fetching

� Allows fast & accurate instruction delivery with simple hardware

� Talk outline

� BLISS overview

– Instruction set and front-end microarchitecture

– Performance optimizations

– Energy optimizations 

� Experimental results

– 20% performance and 14% energy improvements

– Outperforms hardware-only block-based front-ends

� Conclusions
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BLISS Instruction Set

� Explicit basic block descriptors (BBDs)

� Stored separately from instructions in the text segment

� Describe control flow and identify associated instructions 

� Execution model

� PC always points to a BBD, not to instructions

� Atomic execution of basic blocks
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32-bit Descriptor Format

� Type: type of terminating control-flow instruction 

� Fall-through, jump, jump register, forward/backward branch, call, return 

� Offset: displacement for PC-relative branches and jumps

� Offset to target basic block descriptor

� Length: number of instruction in the basic block

� 0 to 15 instructions

� Longer basic blocks use multiple descriptors

� Instruction pointer: address of the first instruction in the block

� Remaining bits from TLB

� Hints: optional compiler-generated hints

� This study: branch hints (biased taken/non-taken branches)

� Other uses: code density, power savings, VLIW techniques, …
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BLISS Code Example

� Example program in C-source code

� Counts the number of zeros in array A

� Calls foo() for each non-zero element
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numeqz=0;

for (i=0; i<N; i++) 

if (A[i]==0) numeqz++;

else foo();
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BLISS Code Example
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addu  r4,r0,r0

lw    r6,0(r1)

bneqz r6,L2

j     L3

jal   FOO

addui r1,r1,4

bneq  r1,r2,L1

L1:

L2:

L3:

addui r4,r4,1

BBD1: FT   ,   --- , 1

BBD2: B_F , BBD4, 2

BBD3: J,       BBD5, 1

BBD4: JAL, FOO,   0

BBD5: B_B,  BBD2, 2

� All jump instructions are redundant

� Several branches can be folded in arithmetic instructions

� Branch offset is encoded in descriptors
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BLISS Decoupled Front-End
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Descriptor cache

replaces BTB

Basic-Block queue

decouples prediction 

from instruction cache

Extra pipe stage to access 

BB-cache
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Front-End Operation: BB-cache Hit
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� Push descriptor & predicted target in BBQ

� Instructions fetched and executed later (decoupling)

� Continue fetching from predicted BBD address

� Hybrid predictor accessed in following cycle to verify speculation
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Front-End Operation: BB-cache Miss
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� Wait for refill from L2 cache

� Calculate 32-bit instruction pointer & target on refill

� Back-end only stalls when BBQ and IQ are drained

� Can hide significant portion of L2 cache latency
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Front-End Operation: Misprediction
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� Flush pipeline including BBQ and IQ

� Restart from correct BBD address

� Start fetching BBDs while recovering back-end state



12C. Kozyrakis, EuroPar 2005

Performance Optimizations (1)

� I-cache misses can be tolerated

� BBQ provides early view into instruction stream

� Guided instruction prefetch 

� I-cache is not in the critical path for speculation

� BBDs  provide branch type and offsets for speculation

� Multi-cycle I-cache does not affect prediction accuracy

– Latency only visible on mispredictions

� Similar to previous decoupled front-end work

� [Calder et.al. 94], [Stark et.al. 97], [Reinman et.al. 01] , …
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Performance Optimizations (2)

� Better target prediction

� L2 backs up target buffer on capacity misses

� No cold misses for PC-relative branch targets

� Compiler hints for branches (optional)

� Better direction prediction 

� All PCs refer to basic block boundaries

– Denser representation leads to less interference

� Judicious use and training of predictor

– No predictor access for fall-through or jump blocks

– Selective use of hybrid predictor if branch hints are available

� Overall up to 41% less pipeline flushes with BLISS

� Without complicated hardware control
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Energy Optimizations

� Energy saved on mispredicted instructions

� Due to better target and direction prediction

� The saving is across the whole processor pipeline

– 15% of energy wasted on mispredicted instructions

� Instruction cache optimizations

� Access only the necessary words in I-cache

� Serial access of tags and data in I-cache

� Merged I-cache accesses waiting in the BBQ

� Judicious use and training of predictor

� No predictor access for fall-through or jump blocks

� Selective use of hybrid predictor if branch hints are available
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Evaluation Methodology

� 8-way superscalar processor

� Out-of-order execution, two-level cache hierarchy

� Simulated with Simplescalar & Wattch  toolsets 

� SpecCPU2K benchmarks with reference datasets

� BLISS code generation

� Binary translation from MIPS executables

� 16% reduction in static code size by eliminating redundancy

� Comparison: fetch-target-block (FTB) [Reinman et. al. 2001]

� Similar to BLISS but pure hardware implementation

� Hardware creates and caches block and extended blocks

– Optimistic approach on FTB misses to help block detection

� Similar performance and energy optimizations applied 
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Front-end Parameters

� BTB, FTB, and BB-cache have exactly the same capacity

� Same number of SRAM bits needed for implementation 

� Nearly identical access latency
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Performance

� Consistent performance advantage for BLISS

� 20% average improvement over base 

� 13% average improvement over FTB

� Sources of performance improvement

� 41% reduction pipeline flushes compared to base

� 24% reduction in I-cache misses due to prefetching
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FTB vs. BLISS
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� FTB 

� Aggressive extended block formation ⇒ higher fetch IPC

� Over-speculation  on misses ⇒ lower commit IPC

� BLISS 

� Stall on misses, get accurate block descriptor from L2 cache

� Balance between under-speculation and over-speculation

1

1.5

2

2.5

3

3.5

4

4.5

FTB BLISS FTB BLISS FTB BLISS FTB BLISS FTB BLISS FTB BLISS

gcc vortex crafty mesa equake average

IP
C

Fetch IPC Commit IPC



19C. Kozyrakis, EuroPar 2005

Prediction Accuracy

� BLISS lead to 41% reduction in mispredictions

� Avoids over-speculation on BB-cache misses

� Accurate indexing and training of the hybrid predictor

� Dense PCs lead to 1% better prediction

� 1.2% better prediction when hints are used

E
x
p
e
ri
m
e
n
ts

0.0

0.2

0.4

0.6

0.8

1.0

1.2

gcc crafty vortex mesa equake AVGN
o
rm

a
liz
e
d
 n
u
m
b
e
r 
o
f 
p
ip
e
lin
e
 f
lu
s
h
e
s Base FTB BLISS BLISS-Hints1.24



20C. Kozyrakis, EuroPar 2005

Instruction Cache
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� BLISS reduces instruction cache misses

� Dense static code

� Prefetching using BBQ contents

� Fewer mispeculated instructions requested
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Total Chip Energy 

� Total energy = front-end + back-end + all caches

� BLISS leads to 14% total energy savings over base

� Front-end savings + savings from fewer mispredictions

� FTB is limited to 7% savings

� Optimistic, large blocks needed to facilitate block creation

� Over-speculation is bad for energy too
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Conclusions

� BLISS: a block-aware instruction set

� Defines basic block descriptors separate from instructions

� Expressive ISA to communicate software info and hints

� Enabled optimizations

� Better target and direction prediction accuracy

� Tolerate I-cache misses

� Less time and energy spent on overspeculation

� Results: improved performance and energy consumption

� 20% performance and 14% energy over conventional

� 13% performance and 7% energy over hardware-only scheme

� Additional benefits from software hints
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