
1

Improving Instruction Delivery
with a Block-Aware ISA

Ahmad Zmily, Earl Killian, Christos Kozyrakis

Computer Systems Laboratory

Stanford University

http://csl.stanford.edu

2C. Kozyrakis, EuroPar 2005

Motivation

� Processor front-end engine

� Performs control flow prediction & instruction fetch

� Sets upper limit for performance

– Cannot execute instructions faster than you can fetch them!

� Front-end detractors

� Control-flow mispredictions that lead to pipeline flushing

� Instruction cache misses

� Multi-cycle instruction cache accesses

M
o
ti
v
a
ti
o
n

0%

10%

20%

30%

40%

50%

Imperfect Predictor Imperfect I-Cache Imperfect Predictor +

Imperfect I-Cache

%
 L
o
s
s

Performance Energy

3C. Kozyrakis, EuroPar 2005

BLISS

� A block-aware instruction set architecture

� Allows software to help with hardware challenges

� Decouples control-flow prediction from instruction fetching

� Allows fast & accurate instruction delivery with simple hardware

� Talk outline

� BLISS overview

– Instruction set and front-end microarchitecture

– Performance optimizations

– Energy optimizations

� Experimental results

– 20% performance and 14% energy improvements

– Outperforms hardware-only block-based front-ends

� Conclusions

O
u
tl
in
e

4C. Kozyrakis, EuroPar 2005

BLISS Instruction Set

� Explicit basic block descriptors (BBDs)

� Stored separately from instructions in the text segment

� Describe control flow and identify associated instructions

� Execution model

� PC always points to a BBD, not to instructions

� Atomic execution of basic blocks

O
v
e
rv
ie
w

Instructions
Instructions

Block Descriptors

Conventional ISA BLISS ISA

Text
Segment

5C. Kozyrakis, EuroPar 2005

32-bit Descriptor Format

� Type: type of terminating control-flow instruction

� Fall-through, jump, jump register, forward/backward branch, call, return

� Offset: displacement for PC-relative branches and jumps

� Offset to target basic block descriptor

� Length: number of instruction in the basic block

� 0 to 15 instructions

� Longer basic blocks use multiple descriptors

� Instruction pointer: address of the first instruction in the block

� Remaining bits from TLB

� Hints: optional compiler-generated hints

� This study: branch hints (biased taken/non-taken branches)

� Other uses: code density, power savings, VLIW techniques, …

O
v
e
rv
ie
w

6C. Kozyrakis, EuroPar 2005

BLISS Code Example

� Example program in C-source code

� Counts the number of zeros in array A

� Calls foo() for each non-zero element

O
v
e
rv
ie
w

numeqz=0;

for (i=0; i<N; i++)

if (A[i]==0) numeqz++;

else foo();

7C. Kozyrakis, EuroPar 2005

BLISS Code Example
O
v
e
rv
ie
w

addu r4,r0,r0

lw r6,0(r1)

bneqz r6,L2

j L3

jal FOO

addui r1,r1,4

bneq r1,r2,L1

L1:

L2:

L3:

addui r4,r4,1

BBD1: FT , --- , 1

BBD2: B_F , BBD4, 2

BBD3: J, BBD5, 1

BBD4: JAL, FOO, 0

BBD5: B_B, BBD2, 2

� All jump instructions are redundant

� Several branches can be folded in arithmetic instructions

� Branch offset is encoded in descriptors

8C. Kozyrakis, EuroPar 2005

BLISS Decoupled Front-End
O
v
e
rv
ie
w Basic Block

Descriptor cache

replaces BTB

Basic-Block queue

decouples prediction

from instruction cache

Extra pipe stage to access

BB-cache

D
e
c
o
d
e

P
C

i-
c
a
c
h
e
 m

is
s

I-
c
a
c
h
e
 p
re
fe
tc
h

9C. Kozyrakis, EuroPar 2005

Front-End Operation: BB-cache Hit
O
v
e
rv
ie
w

� Push descriptor & predicted target in BBQ

� Instructions fetched and executed later (decoupling)

� Continue fetching from predicted BBD address

� Hybrid predictor accessed in following cycle to verify speculation

10C. Kozyrakis, EuroPar 2005

Front-End Operation: BB-cache Miss
O
v
e
rv
ie
w

� Wait for refill from L2 cache

� Calculate 32-bit instruction pointer & target on refill

� Back-end only stalls when BBQ and IQ are drained

� Can hide significant portion of L2 cache latency

11C. Kozyrakis, EuroPar 2005

Front-End Operation: Misprediction
O
v
e
rv
ie
w

� Flush pipeline including BBQ and IQ

� Restart from correct BBD address

� Start fetching BBDs while recovering back-end state

12C. Kozyrakis, EuroPar 2005

Performance Optimizations (1)

� I-cache misses can be tolerated

� BBQ provides early view into instruction stream

� Guided instruction prefetch

� I-cache is not in the critical path for speculation

� BBDs provide branch type and offsets for speculation

� Multi-cycle I-cache does not affect prediction accuracy

– Latency only visible on mispredictions

� Similar to previous decoupled front-end work

� [Calder et.al. 94], [Stark et.al. 97], [Reinman et.al. 01] , …

O
p
ti
m
iz
a
ti
o
n
s

13C. Kozyrakis, EuroPar 2005

Performance Optimizations (2)

� Better target prediction

� L2 backs up target buffer on capacity misses

� No cold misses for PC-relative branch targets

� Compiler hints for branches (optional)

� Better direction prediction

� All PCs refer to basic block boundaries

– Denser representation leads to less interference

� Judicious use and training of predictor

– No predictor access for fall-through or jump blocks

– Selective use of hybrid predictor if branch hints are available

� Overall up to 41% less pipeline flushes with BLISS

� Without complicated hardware control

O
p
ti
m
iz
a
ti
o
n
s

14C. Kozyrakis, EuroPar 2005

Energy Optimizations

� Energy saved on mispredicted instructions

� Due to better target and direction prediction

� The saving is across the whole processor pipeline

– 15% of energy wasted on mispredicted instructions

� Instruction cache optimizations

� Access only the necessary words in I-cache

� Serial access of tags and data in I-cache

� Merged I-cache accesses waiting in the BBQ

� Judicious use and training of predictor

� No predictor access for fall-through or jump blocks

� Selective use of hybrid predictor if branch hints are available

O
p
ti
m
iz
a
ti
o
n
s

15C. Kozyrakis, EuroPar 2005

Evaluation Methodology

� 8-way superscalar processor

� Out-of-order execution, two-level cache hierarchy

� Simulated with Simplescalar & Wattch toolsets

� SpecCPU2K benchmarks with reference datasets

� BLISS code generation

� Binary translation from MIPS executables

� 16% reduction in static code size by eliminating redundancy

� Comparison: fetch-target-block (FTB) [Reinman et. al. 2001]

� Similar to BLISS but pure hardware implementation

� Hardware creates and caches block and extended blocks

– Optimistic approach on FTB misses to help block detection

� Similar performance and energy optimizations applied

M
e
th
o
d
o
lo
g
y

16C. Kozyrakis, EuroPar 2005

Front-end Parameters

� BTB, FTB, and BB-cache have exactly the same capacity

� Same number of SRAM bits needed for implementation

� Nearly identical access latency

M
e
th
o
d
o
lo
g
y

32 KBytes, 4-way

2-cycle access pipelined

I-cache
Latency

4 Entries–
Decoupling
Queue

BLISSFTBBase

1 basic block 1 (extended) block8 instructionsFetch Width

BB-cache: 2K entries

4-way

1 cycle access

8 entries per line

FTB: 2K entries

4-way

1 cycle access

BTB: 2K entries

4-way

1 cycle access

Target

Predictor

17C. Kozyrakis, EuroPar 2005

Performance

� Consistent performance advantage for BLISS

� 20% average improvement over base

� 13% average improvement over FTB

� Sources of performance improvement

� 41% reduction pipeline flushes compared to base

� 24% reduction in I-cache misses due to prefetching

E
x
p
e
ri
m
e
n
ts

-10%

0%

10%

20%

30%

gcc crafty vortex mesa equake AVG%
 I
P
C
 I
m
p
ro
v
e
m
e
n
t
o
v
e
r
B
a
s
e FTB BLISS BLISS-Hints

46% 51%52%39%

18C. Kozyrakis, EuroPar 2005

FTB vs. BLISS
E
x
p
e
ri
m
e
n
ts

� FTB

� Aggressive extended block formation ⇒ higher fetch IPC

� Over-speculation on misses ⇒ lower commit IPC

� BLISS

� Stall on misses, get accurate block descriptor from L2 cache

� Balance between under-speculation and over-speculation

1

1.5

2

2.5

3

3.5

4

4.5

FTB BLISS FTB BLISS FTB BLISS FTB BLISS FTB BLISS FTB BLISS

gcc vortex crafty mesa equake average

IP
C

Fetch IPC Commit IPC

19C. Kozyrakis, EuroPar 2005

Prediction Accuracy

� BLISS lead to 41% reduction in mispredictions

� Avoids over-speculation on BB-cache misses

� Accurate indexing and training of the hybrid predictor

� Dense PCs lead to 1% better prediction

� 1.2% better prediction when hints are used

E
x
p
e
ri
m
e
n
ts

0.0

0.2

0.4

0.6

0.8

1.0

1.2

gcc crafty vortex mesa equake AVGN
o
rm

a
liz
e
d
 n
u
m
b
e
r
o
f
p
ip
e
lin
e
 f
lu
s
h
e
s Base FTB BLISS BLISS-Hints1.24

20C. Kozyrakis, EuroPar 2005

Instruction Cache
E
x
p
e
ri
m
e
n
ts

� BLISS reduces instruction cache misses

� Dense static code

� Prefetching using BBQ contents

� Fewer mispeculated instructions requested

0.4

0.6

0.8

1.0

1.2

gcc crafty vortex mesa equake AVG

N
o
rm

a
li
z
e
d
 n
u
m
b
e
r
o
f
I-
c
a
c
h
e
 m

is
s
e
s

Base FTB BLISS BLISS-Hints

21C. Kozyrakis, EuroPar 2005

Total Chip Energy

� Total energy = front-end + back-end + all caches

� BLISS leads to 14% total energy savings over base

� Front-end savings + savings from fewer mispredictions

� FTB is limited to 7% savings

� Optimistic, large blocks needed to facilitate block creation

� Over-speculation is bad for energy too

E
x
p
e
ri
m
e
n
ts

0%

5%

10%

15%

20%

25%

30%

gcc crafty vortex mesa equake AVG

%
 E

n
e
rg
y
 I
m
p
ro
v
e
m
e
n
t
o
v
e
r

B
a
s
e

FTB BLISS BLISS-Hints

22C. Kozyrakis, EuroPar 2005

Conclusions

� BLISS: a block-aware instruction set

� Defines basic block descriptors separate from instructions

� Expressive ISA to communicate software info and hints

� Enabled optimizations

� Better target and direction prediction accuracy

� Tolerate I-cache misses

� Less time and energy spent on overspeculation

� Results: improved performance and energy consumption

� 20% performance and 14% energy over conventional

� 13% performance and 7% energy over hardware-only scheme

� Additional benefits from software hints

C
o
n
c
lu
s
io
n
s

