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Motivation
Processor front-end engine
– Performs control flow prediction & instruction fetch
– Sets upper limit for performance

Cannot execute faster than you can fetch

However, energy efficiency is also important 
– Dense servers
– Same processor core in server and notebook chips
– Environmental concerns 

Focus of this paper
– Can we build front-ends that achieve both goals?
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The Problem
Front-end detractors 
– Instruction cache misses
– Multi-cycle instruction cache accesses
– Control-flow mispredictions & pipeline flushing 

The cost for a 4-way superscalar processor
– 48% performance loss 
– 21% increase in total energy consumption
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BLISS
A block-aware instruction set architecture
– Decouples control-flow prediction from instruction fetching
– Allows software to help with hardware challenges 

Talk outline
– BLISS overview

Instruction set and front-end microarchitecture
– BLISS opportunities

Performance optimizations
Energy optimizations 

– Experimental results
14% performance improvement
16% total energy improvement 

– Conclusions
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BLISS Instruction Set

Explicit basic block descriptors (BBDs)
– Stored separately from instructions in the text segment
– Describe control flow and identify associated instructions 

Execution model
– PC always points to a BBD, not to instructions
– Atomic execution of basic blocks
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32-bit Descriptor Format

Type: type of terminating branch 
– Fall-through, jump, jump register, forward/backward branch, call, return, … 

Offset: displacement for PC-relative branches and jumps
– Offset to target descriptor

Length: number of instruction in the basic block
– 0 to 15 instructions
– Longer basic blocks use multiple descriptors

Instruction pointer: address of the first instruction in the block
– Remaining bits from TLB

Hints: optional compiler-generated hints
– This study: branch hints
– Biased taken/non-taken branches
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BLISS Code Example

Example program in C-source code:
– Counts the number of zeros in array a
– Calls foo() for each non-zero element
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numeqz=0;
for (i=0; i<N; i++) 
if (a[i]==0) numeqz++;
else foo();
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BLISS Code Example
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addu  r4,r0,r0

lw    r6,0(r1)

bneqz r6,L2

j     L3

jal   FOO

addui r1,r1,4
bneq  r1,r2,L1

L1:

L2:

L3:

addui r4,r4,1

BBD1: FT   ,   --- , 1

BBD2: B_F , BBD4, 2

BBD3: J,       BBD5, 1

BBD4: JAL, FOO,   0

BBD5: B_B,    --- , 2

All jump instructions are redundant
Several branches can be folded in arithmetic instructions
– Branch offset is encoded in descriptors
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BLISS Decoupled Front-End
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Basic Block 
Descriptor cache

replaces BTB

Basic-Block queue
decouples prediction 

from instruction cache

Extra pipe stage to access 
BB-cache
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BLISS Decoupled Front-End
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BB-cache hit
– Push descriptor & predicted target in BBQ

Instructions fetched and executed later (decoupling)
– Continue fetching from predicted BBD address
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BLISS Decoupled Front-End
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BB-cache miss
– Wait for refill from L2 cache

Calculate 32-bit instruction pointer & target on refill
– Back-end only stalls when BBQ and IQ are drained
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BLISS Decoupled Front-End
O

ve
rv

ie
w

D
ec

od
e

P
C

i-c
ac

he
 m

is
s

I-c
ac

he
 p

re
fe

tc
h

Control-flow misprediction
– Flush pipeline including BBQ and IQ
– Restart from correct BBD address
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Performance Optimizations (1)

I-cache is not in the critical path for speculation
– BBDs  provide branch type and offsets
– Multi-cycle I-cache does not affect prediction accuracy
– BBQ decouples predictions from instruction fetching

Latency only visible on mispredictions

I-cache misses can be tolerated
– BBQ provides early view into instruction stream
– Guided instruction prefetch 
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Performance Optimizations (2)

Judicious use and training of predictor
– All PCs refer to basic block boundaries
– No predictor access for fall-through or jump blocks
– Selective use of hybrid predictor for different types of blocks

If branch hints are used

Better target prediction
– No cold-misses for PC-relative branch targets
– 36% less number of pipeline flushes with BLISS
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Front-End Energy Optimizations (1)

Access only the necessary words in I-cache
– The length of each basic block is known
– Use segmented word-lines

Serial access of tags and data in I-cache
– Reduces energy of associative I-cache

Single data block read
– Increase in latency tolerated by decoupling

Merged I-cache accesses
– For blocks in BBQ that access same cache lines
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Front-End Energy Optimizations (2)

Judicious use and training of predictor
– All PCs refer to basic block boundaries
– No predictor access for fall-through or jump blocks
– Selective use of hybrid predictor for different types of blocks

If branch hints are used

Energy saved on mispredicted instructions
– Due to better target and direction prediction
– The saving is across the whole processor pipeline

15% of energy wasted on mispredicted instructions
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Evaluation Methodology
4-way superscalar processor
– Out-of-order execution, two-level cache hierarchy
– Simulated with Simplescalar & Wattch  toolsets 
– SpecCPU2K benchmarks with reference datasets

Comparison: fetch-target-block architecture (FTB) [Reinman et al.]
– Similar to BLISS but pure hardware implementation
– Hardware creates and caches block and hyperblock descriptors
– Similar performance and energy optimizations applied 

BLISS code generation
– Binary translation from MIPS executables
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Front-end Parameters
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3-cycle pipelined2-cycle pipelinedI-cache 
Latency

8 Entries--Decoupling 
Queue

BLISSFTBBase

1 Basic block  1 Fetch block4 InstructionsFetch Width

BB-cache: 1K entries
4-way

1 cycle access
8 entries per line

FTB: 1K entries
4-way

1 cycle access

BTB: 1K entries
4-way

1 cycle access

Target
Predictor

BTB, FTB, and BB-cache have exactly the same capacity
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Performance

Consistent performance advantage for BLISS
– 14% average improvement over base 
– 9% average improvement over FTB

Sources of performance improvement
– 36% reduction pipeline flushes compared to base
– 10% reduction in I-cache misses due to prefetching
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FTB vs BLISS

FTB ⇒ higher fetch IPC
– Optimistic, large blocks needed to facilitate block creation
– But they lead to overspeculation & predictor interference 

Bad for performance and energy

BLISS ⇒ higher commit IPC 
– Blocks defined by software
– Always available in L2 on a miss, no need to recreate
– But, no hyperblocks

Suboptimal only for 1 SPEC benchmark (vortex)
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Front-End Energy

65% energy reduction in the front-end 
– 40% in the instruction cache
– 12% in the predictors
– 13% in the BTB/BB-cache

Approximately 13% of total chip energy in front-end
– I-cache, predictors, and BTB are bit SRAMs
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Total Chip Energy 

Total energy = front-end + back-end + all caches
BLISS leads to 16% total energy savings over base

– Front-end savings + savings from fewer mispredictions
– FTB leads to 9% savings

ED2P comparison (appropriate for high-end chips)
– BLISS offers 83% improvement over base
– FTB limited to 35% improvement
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Conclusions
BLISS: a block-aware instruction set
– Block descriptors separate from instructions
– Expressive ISA to communicate software info and hints

Enabled optimizations
– Better prediction accuracy, tolerate I-cache misses
– Judicious use of I-cache/predictors, less energy on 

mispredictions

Result: better performance and energy consumption
– 14% performance improvement
– 16% total energy improvement
– Compares favorably to hardware-only scheme
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