
Energy-efficient & High-performance
Instruction Fetch using a Block-aware ISA

Ahmad Zmily and Christos Kozyrakis

Electrical Engineering Department
Stanford University

Ahmad Zmily, ISLPED’05 2

Motivation
Processor front-end engine
– Performs control flow prediction & instruction fetch
– Sets upper limit for performance

Cannot execute faster than you can fetch

However, energy efficiency is also important
– Dense servers
– Same processor core in server and notebook chips
– Environmental concerns

Focus of this paper
– Can we build front-ends that achieve both goals?

M
ot

iv
at

io
n

Ahmad Zmily, ISLPED’05 3

The Problem
Front-end detractors
– Instruction cache misses
– Multi-cycle instruction cache accesses
– Control-flow mispredictions & pipeline flushing

The cost for a 4-way superscalar processor
– 48% performance loss
– 21% increase in total energy consumption

M
ot

iv
at

io
n

0%

10%
20%

30%
40%

50%

Imperfect Predictor Imperfect I-Cache Imperfect Predictor +
Imperfect I-Cache

%
 L

os
s

Performance Energy

Ahmad Zmily, ISLPED’05 4

BLISS
A block-aware instruction set architecture
– Decouples control-flow prediction from instruction fetching
– Allows software to help with hardware challenges

Talk outline
– BLISS overview

Instruction set and front-end microarchitecture
– BLISS opportunities

Performance optimizations
Energy optimizations

– Experimental results
14% performance improvement
16% total energy improvement

– Conclusions

O
ut

lin
e

Ahmad Zmily, ISLPED’05 5

BLISS Instruction Set

Explicit basic block descriptors (BBDs)
– Stored separately from instructions in the text segment
– Describe control flow and identify associated instructions

Execution model
– PC always points to a BBD, not to instructions
– Atomic execution of basic blocks

O
ve

rv
ie

w

Instructions
Instructions

Block Descriptors

Conventional ISA BLISS ISA

Text
Segment

Ahmad Zmily, ISLPED’05 6

32-bit Descriptor Format

Type: type of terminating branch
– Fall-through, jump, jump register, forward/backward branch, call, return, …

Offset: displacement for PC-relative branches and jumps
– Offset to target descriptor

Length: number of instruction in the basic block
– 0 to 15 instructions
– Longer basic blocks use multiple descriptors

Instruction pointer: address of the first instruction in the block
– Remaining bits from TLB

Hints: optional compiler-generated hints
– This study: branch hints
– Biased taken/non-taken branches

O
ve

rv
ie

w

Ahmad Zmily, ISLPED’05 7

BLISS Code Example

Example program in C-source code:
– Counts the number of zeros in array a
– Calls foo() for each non-zero element

O
ve

rv
ie

w

numeqz=0;
for (i=0; i<N; i++)
if (a[i]==0) numeqz++;
else foo();

Ahmad Zmily, ISLPED’05 8

BLISS Code Example
O

ve
rv

ie
w

addu r4,r0,r0

lw r6,0(r1)

bneqz r6,L2

j L3

jal FOO

addui r1,r1,4
bneq r1,r2,L1

L1:

L2:

L3:

addui r4,r4,1

BBD1: FT , --- , 1

BBD2: B_F , BBD4, 2

BBD3: J, BBD5, 1

BBD4: JAL, FOO, 0

BBD5: B_B, --- , 2

All jump instructions are redundant
Several branches can be folded in arithmetic instructions
– Branch offset is encoded in descriptors

Ahmad Zmily, ISLPED’05 9

BLISS Decoupled Front-End
O

ve
rv

ie
w

D
ec

od
e

P
C

i-c
ac

he
 m

is
s

I-c
ac

he
 p

re
fe

tc
h

Basic Block
Descriptor cache

replaces BTB

Basic-Block queue
decouples prediction

from instruction cache

Extra pipe stage to access
BB-cache

Ahmad Zmily, ISLPED’05 10

BLISS Decoupled Front-End
O

ve
rv

ie
w

D
ec

od
e

P
C

i-c
ac

he
 m

is
s

I-c
ac

he
 p

re
fe

tc
h

BB-cache hit
– Push descriptor & predicted target in BBQ

Instructions fetched and executed later (decoupling)
– Continue fetching from predicted BBD address

Ahmad Zmily, ISLPED’05 11

BLISS Decoupled Front-End
O

ve
rv

ie
w

D
ec

od
e

P
C

i-c
ac

he
 m

is
s

I-c
ac

he
 p

re
fe

tc
h

BB-cache miss
– Wait for refill from L2 cache

Calculate 32-bit instruction pointer & target on refill
– Back-end only stalls when BBQ and IQ are drained

Ahmad Zmily, ISLPED’05 12

BLISS Decoupled Front-End
O

ve
rv

ie
w

D
ec

od
e

P
C

i-c
ac

he
 m

is
s

I-c
ac

he
 p

re
fe

tc
h

Control-flow misprediction
– Flush pipeline including BBQ and IQ
– Restart from correct BBD address

Ahmad Zmily, ISLPED’05 13

Performance Optimizations (1)

I-cache is not in the critical path for speculation
– BBDs provide branch type and offsets
– Multi-cycle I-cache does not affect prediction accuracy
– BBQ decouples predictions from instruction fetching

Latency only visible on mispredictions

I-cache misses can be tolerated
– BBQ provides early view into instruction stream
– Guided instruction prefetch

O
pt

im
iz

at
io

ns

Ahmad Zmily, ISLPED’05 14

Performance Optimizations (2)

Judicious use and training of predictor
– All PCs refer to basic block boundaries
– No predictor access for fall-through or jump blocks
– Selective use of hybrid predictor for different types of blocks

If branch hints are used

Better target prediction
– No cold-misses for PC-relative branch targets
– 36% less number of pipeline flushes with BLISS

O
pt

im
iz

at
io

ns

Ahmad Zmily, ISLPED’05 15

Front-End Energy Optimizations (1)

Access only the necessary words in I-cache
– The length of each basic block is known
– Use segmented word-lines

Serial access of tags and data in I-cache
– Reduces energy of associative I-cache

Single data block read
– Increase in latency tolerated by decoupling

Merged I-cache accesses
– For blocks in BBQ that access same cache lines

O
pt

im
iz

at
io

ns

Ahmad Zmily, ISLPED’05 16

Front-End Energy Optimizations (2)

Judicious use and training of predictor
– All PCs refer to basic block boundaries
– No predictor access for fall-through or jump blocks
– Selective use of hybrid predictor for different types of blocks

If branch hints are used

Energy saved on mispredicted instructions
– Due to better target and direction prediction
– The saving is across the whole processor pipeline

15% of energy wasted on mispredicted instructions

O
pt

im
iz

at
io

ns

Ahmad Zmily, ISLPED’05 17

Evaluation Methodology
4-way superscalar processor
– Out-of-order execution, two-level cache hierarchy
– Simulated with Simplescalar & Wattch toolsets
– SpecCPU2K benchmarks with reference datasets

Comparison: fetch-target-block architecture (FTB) [Reinman et al.]
– Similar to BLISS but pure hardware implementation
– Hardware creates and caches block and hyperblock descriptors
– Similar performance and energy optimizations applied

BLISS code generation
– Binary translation from MIPS executables

Ex
pe

rim
en

ts

Ahmad Zmily, ISLPED’05 18

Front-end Parameters
Ex

pe
rim

en
ts

3-cycle pipelined2-cycle pipelinedI-cache
Latency

8 Entries--Decoupling
Queue

BLISSFTBBase

1 Basic block 1 Fetch block4 InstructionsFetch Width

BB-cache: 1K entries
4-way

1 cycle access
8 entries per line

FTB: 1K entries
4-way

1 cycle access

BTB: 1K entries
4-way

1 cycle access

Target
Predictor

BTB, FTB, and BB-cache have exactly the same capacity

Ahmad Zmily, ISLPED’05 19

Performance

Consistent performance advantage for BLISS
– 14% average improvement over base
– 9% average improvement over FTB

Sources of performance improvement
– 36% reduction pipeline flushes compared to base
– 10% reduction in I-cache misses due to prefetching

Ex
pe

rim
en

ts

-5%

5%

15%

25%

35%

gzip vortex twolf mesa equake AVG

%
 IP

C
 Im

pr
ov

em
en

t
FTB BLISS BLISS-Hints50%38%

Ahmad Zmily, ISLPED’05 20

FTB vs BLISS

FTB ⇒ higher fetch IPC
– Optimistic, large blocks needed to facilitate block creation
– But they lead to overspeculation & predictor interference

Bad for performance and energy

BLISS ⇒ higher commit IPC
– Blocks defined by software
– Always available in L2 on a miss, no need to recreate
– But, no hyperblocks

Suboptimal only for 1 SPEC benchmark (vortex)

0

1

2

3

4

5

6

FTB BLISS FTB BLISS FTB BLISS FTB BLISS FTB BLISS FTB BLISS

gzip vortex twolf mesa equake average

IP
C

Fetch IPC Commit IPC

Ex
pe

rim
en

ts

Ahmad Zmily, ISLPED’05 21

Front-End Energy

65% energy reduction in the front-end
– 40% in the instruction cache
– 12% in the predictors
– 13% in the BTB/BB-cache

Approximately 13% of total chip energy in front-end
– I-cache, predictors, and BTB are bit SRAMs

Ex
pe

rim
en

ts

0%

20%

40%

60%

80%

gzip vortex twolf mesa equake AVG

%
 F

E
En

er
gy

 S
av

in
gs

FTB BLISS BLISS-Hints

Ahmad Zmily, ISLPED’05 22

Total Chip Energy

Total energy = front-end + back-end + all caches
BLISS leads to 16% total energy savings over base

– Front-end savings + savings from fewer mispredictions
– FTB leads to 9% savings

ED2P comparison (appropriate for high-end chips)
– BLISS offers 83% improvement over base
– FTB limited to 35% improvement

Ex
pe

rim
en

ts

0%

10%

20%

30%

gzip vortex twolf mesa equake AVG

%
 T

ot
al

 E
ne

rg
y

Sa
vi

ng
s

FTB BLISS BLISS-Hints
32%

Ahmad Zmily, ISLPED’05 23

Conclusions
BLISS: a block-aware instruction set
– Block descriptors separate from instructions
– Expressive ISA to communicate software info and hints

Enabled optimizations
– Better prediction accuracy, tolerate I-cache misses
– Judicious use of I-cache/predictors, less energy on

mispredictions

Result: better performance and energy consumption
– 14% performance improvement
– 16% total energy improvement
– Compares favorably to hardware-only scheme

C
on

cl
us

io
ns

