530

Improving Instruction Delivery with a Block-Aware ISA

Ahmad Zmily, Earl Killian, and Christos Kozyrakis

Electrical Engineering Department
Stanford University
{zmily,killian, kozyraki}@stanford.edu

Abstract. Instruction delivery is a critical component for wide-issue processors
since its bandwidth and accuracy place an upper limit on performance. The pro-
cessor front-end accuracy and bandwidth are limited by instruction cache misses,
multi-cycle instruction cache accesses, and target or direction mispredictions for
control-flow operations. This paper introduces a block-aware ISA (BLISS) that
helps accurate instruction delivery by defining basic block descriptors in addition
to and separate from the actual instructions in a program. We show that BLISS al-
lows for a decoupled front-end that tolerates cache latency and allows for higher
speculation accuracy. This translates to a 20% IPC and 14% energy improvements
over conventional front-ends. We also demonstrate that a BLISS-based front-end
outperforms by 13% decoupled front-ends that detect fetched blocks dynamically
in hardware, without any information from the ISA.

1 Introduction

Effective instruction delivery is vital for superscalar processors [1]. The rate and accu-
racy at which instructions enter the pipeline set an upper limit to sustained performance.
Consequently, wide-issue designs place increased demands on the processor front-end,
the engine responsible for control-flow prediction and instruction fetching. The front-
end must handle three basic detractors: instruction cache misses that cause instruction
delivery stalls; target and direction mispredictions for branches that send erroneous in-
structions to the execution core; and multi-cycle instruction cache accesses that cause
additional uncertainty about the existence and direction of branches within the instruc-
tion stream.

To overcome these problems in high performance yet energy efficient way, we pro-
pose a block-aware instruction set architecture (BLISS). BLISS defines basic block
descriptors in addition to and separately from the actual instructions in each program.
A descriptor provides sufficient information for fast and accurate control-flow predic-
tion without accessing or parsing the instruction stream. It describes the type of the
control-flow operation that terminates the block, its potential target, and the number
of instructions in the basic block. BLISS allows the processor front-end to access the
software defined block descriptors through a small cache that replaces the block target
buffer (BTB). The descriptors’ cache decouples control-flow speculation from instruc-
tion cache accesses. Hence, the instruction cache latency is no longer in the critical
path of accurate prediction. The fetched descriptors can be used to prefetch instructions
and eliminate the impact of instruction cache misses. Furthermore, the control-flow in-
formation available in descriptors allows for judicious use of branch predictors, which

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 530-539, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [600 600] dpi
 Paper Size: [439.37 666.142] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Cancel Job
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [600 600]
>> setpagedevice

Improving Instruction Delivery with a Block-Aware ISA 531

4 9 4 13 2

| Type | Offset | Length | Instruction Pointer | Hints |
Type: basic block type (type of terminating branch) Offset: displacement for PC-relative branches and jumps
- fall-through (FT)
- backward conditional branch (BR_B) Length : number of instruction in the basic block (0..15)
- forward conditional branch (BR_F)
- jump (J) Instruction pointer :
- jump-and-link (JAL) address of the 1st instruction in the block (bits [14:2])
- jump register (JR) bits [31:15] are stored in the TLB
- jump-and-link register (JALR)
- call return (RET) Hints : optional compiler-generated hints
- zero overhead loop (LOOP) used for static branch hints in this study

Fig. 1. The 32-bit basic block descriptor format in BLISS.

reduces interference and training time and improves overall prediction accuracy. We
demonstrate that for an 8-way superscalar processor, a BLISS-based front-end allows
for 20% performance improvement and 14% overall energy savings over a conventional
front-end engine.

Moreover, BLISS compares favorably to advanced, hardware-based schemes for
decoupled front-end engines such as the fetch-block-buffer (FTB) design [2, 3]. The
FTB performs aggressive block coalescing to increase the number of instructions per
control-flow prediction and increase the utilization of the BTB. The BLISS-based front-
end provides higher control-flow accuracy than the FTB by removing over-speculation
with block fetching and coalescing. Our experiments show that a BLISS-based 8-way
processor provides 13% higher performance and 7% overall energy savings over the
FTB design.

Overall, we demonstrate the potential of delegating portions of instruction delivery
(accurate fetch block formation) to software using an expressive ISA.

2 Block-Aware Instruction Set Architecture

Our proposal for addressing front-end performance is based on a block-aware instruc-
tion set (BLISS) that explicitly describes basic blocks. A basic block (BB) is a sequence
of instructions starting at the target or fall-through of a control-flow instruction and
ending with the next control-flow instruction or before the next potential branch target.

BLISS stores the definitions for basic blocks in addition to and separately from the
ordinary instructions they include. The code segment for a program is divided in two
distinct sections. The first section contains descriptors that define the type and bound-
aries of blocks, while the second section lists the actual instructions in each block. Fig-
ure 1 presents the format of a basic block descriptor (BBD). Each BBD defines the type
of the control-flow operation that terminates the block. The BBD also includes an offset
field to be used for blocks ending with a branch or a jump with PC-relative addressing.
The actual instructions in the basic block are identified by the pointer to the first in-
struction and the length field. The last BBD field contains optional compiler-generated
hints. In this study, we make limited use of this field to convey branch prediction hints
generated through profiling [4]. The overall BBD length is 32 bits.

532 Ahmad Zmily, Earl Killian, and Christos Kozyrakis

C code MIPS code BLISS code
addu r4, r0, ro - BB descriptors Instructions

. .

Li: 1w r6, 0(rl) . BBDI: FT, __ e addu rd, r0, r0 -
numeqz=0; M bneqgz r6, L2 N BBD2 : BR_F, BBD4, — 1w r6, 0(rl)
for (i=0; i<N; i++) R R R R :

if (alil==0) . addui r4, r4, 1 N BBD3: J, BBD5,

numeqz++; 5 L3 N BBD4 : JALR,

else f-------~-------~----f :
foo(); «L2: jalr 3 . BBD5: BR_B, BBD2, 2, i jalr r3 .
..................... : ,

\L3: addui rl, rl, 4 | \ addui r1, r1, 4 .

voR RN e
. g
0.5
.0
£ .9
S
] H
= o
5
=
-

(a) (b) ()

Fig. 2. Example program in (a) C source code, (b) MIPS assembly, and (c) BLISS assembly. In
(b) and (c), the instructions in each basic block are identified with dotted-line boxes. Register r3
contains the address for the first instruction (b) or first basic block descriptor (c) of function foo.
For illustration purposes, the instruction pointers in basic block descriptors are represented with
arrows.

BLISS treats each basic block as an atomic unit of execution. There is a single
program counter and it only points within the code segment for BBDs. The execution
of all instructions associated with each descriptor updates the PC so that it points to the
descriptor for the next basic block in the program order (PC+4 or PC+offset). Precise
exceptions are supported similar to [5].

The BBDs provide the processor front-end with architectural information about the
program control-flow in a compressed and accurate manner. Since BBDs are stored
separately from instructions, their information is available for front-end tasks before
instructions are fetched and decoded. The sequential block target is always at PC+4,
regardless of the number of instructions in the block. The non-sequential block target
(PC+offset) is also available through the offset field for all blocks terminating with a
PC-relative control-flow instructions (branches — BR_B and BR_F, jumps — J and JAL,
loop — LOOP). For the remaining cases (jump register — JR and JALR, return — RET),
the non-sequential target is provided by the last instruction in the block through a reg-
ister. BBDs provide the branch condition when it is statically determined (all jumps,
return, fall-through blocks). For conditional branches, the BBD provides type infor-
mation (forward, backward, loop) and hints which can assist with dynamic prediction.
The actual branch condition is provided by the last instruction in the block. Finally,
instruction pointer and length fields can be used for instruction (pre)fetching.

Figure 2 presents an example program that counts the number of zeros in array a
and calls foo () for each non-zero element. With a RISC ISA like MIPS, the program
requires 8 instructions (Figure 2.b). The 4 control-flow operations define 5 basic blocks.
All branch conditions and targets are defined by the branch and jump instructions. With
the BLISS equivalent of MIPS (Figure 2.c), the program requires 5 basic block de-
scriptors and 7 instructions. All PC-relative offsets for branch and jump operations are
available in BBDs. Compared to the original code, we have eliminated the j instruc-
tion. The corresponding descriptor (BBD3) defines both the control-flow type (J) and
the offset, hence the jump instruction itself is redundant. However, we cannot eliminate

Improving Instruction Delivery with a Block-Aware ISA 533

mipredicted branch target
Branch fype
Fiybrid BBQ []
Predictor |-Cache Schedule
! Pipelined &
" Execute
-~ | |
= <basic block> <
> BB-Cache 2
° "
BB-cache misses o 2
B 2 D-Cache
g 5
: g
- 9
call return target 4 . 2 b I
basic block target | L2 Cache |

hints
(2b)

bimod
(2b)

target
(30b)

BB-cache Entry Format: || tag | 'zf;

length instr. pointer
(4b) (13b)

Fig. 3. A decoupled front-end for a superscalar processor based on the BLISS ISA

either of the two conditional branches (bnegz, bne). The corresponding BBDs pro-
vide the offsets but not the branch conditions, which are still specified by the regular
instructions. However, the regular branch instructions no longer need an offset field,
which frees a large number of instruction bits. Similarly, we have preserved the jalr
instruction because it allows reading the jump target from register r3 and writing the
return address in register r31.

Note that function pointers, virtual methods, jump tables, and dynamic linking are
implemented in BLISS using jump-register BBDs and instructions in an identical man-
ner to how they are implemented with conventional ISAs. For example, the target regis-
ter (r3) for the j r instruction in Figure 2 could be the destination register of a previous
load instruction.

3 Decoupled Front-End for the Block-Aware ISA

The BLISS ISA suggests a superscalar front-end that fetches BBDs and the associated
instructions in a decoupled manner. Figure 3 presents a BLISS-based front-end that re-
places branch target buffer (BTB) with a BB-cache that caches the block descriptors
in programs. The offset field in each descriptor is stored in the BB-cache in an ex-
panded form that identifies the full target of the terminating branch. For PC-relative
branches and jumps, the expansion takes place on BB-cache refills from lower levels of
the memory hierarchy, which eliminates target mispredictions even for the first time the
branch is executed. For the register-based jumps, the offset field is available after the
first execution of the basic block. The BB-cache stores eight sequential BBDs per cache
line. Long BB-cache lines exploit spatial locality in descriptor accesses and reduce the
storage overhead for tags.

The BLISS front-end operation is simple. On every cycle, the BB-cache is accessed
using the PC. On a miss, the front-end stalls until the missing descriptor is retrieved
from the memory hierarchy (L2 cache). On a hit, the BBD and its predicted direc-
tion/target are pushed in the basic block queue (BBQ). The direction is also verified

534 Ahmad Zmily, Earl Killian, and Christos Kozyrakis

by a tag-less, hybrid predictor. The predicted PC is used to access the BB-cache in the
following cycle. Instruction cache accesses use the instruction pointer and length fields
in the descriptors available in the BBQ.

The BLISS front-end alleviates all shortcomings of a conventional front-end. The
BBQ decouples control-flow prediction from instruction fetching. Multi-cycle latency
for large instruction cache no longer affects prediction accuracy, as the vital information
for speculation is included in basic-block descriptors available through the BB-cache
(block length, target offset). Since the PC in the BLISS ISA always points to basic
block descriptors (i.e. a control-flow instruction), the hybrid predictor is only used and
trained for PCs that correspond to branches. With a conventional front-end, on the other
hand, the PC may often point to non control-flow instructions which causes additional
interference and slower training for the hybrid predictor. The contents of the BLISS
BBQ also provide an early view into the instruction address stream and can be used for
instruction prefetching and hide instruction cache misses [6].

A decoupled front-end similar to the one in Figure 3 can be implemented without
the ISA support provided by BLISS. The FTB design [2, 3] describes the latest of such
design. The FTB detects basic block boundaries and targets dynamically in hardware
and stores them in an advanced BTB called the fetch target buffer (FTB). Block bound-
aries are discovered by introducing large instruction sequential blocks which are later
shortened when jumps are decoded (misfetch) or branches are taken (mispredict) within
the block. The FTB allows for instruction fetch decoupling and prefetching as described
above. Furthermore, the FTB coalesces multiple continuous basic blocks into a single
long fetch block in order to improve control-flow rate and better utilize the FTB capac-
ity. Nevertheless, the simpler BLISS front-end outperforms the aggressive FTB design
by providing a better balance between over- and under-speculation. With BLISS, block
formation is statically done in software and it never introduces misfetches. In addition,
the PC used to access the hybrid predictor for each block (branch) is the same. With
FTB, as fetch blocks shrink dynamically when branches switch behavior, the PC used
to index in the predictor and FTB for each branch changes dynamically, causing slower
predictor training and additional interference.

4 Methodology

We simulate an 8-way superscalar processor in order to compare the BLISS-based
front-end to conventional (base) and FTB-based front-ends. Table 1 summarizes the
key architectural parameters. Note that the target prediction buffers in the three front-
ends (BTB, FTB, and BB-cache) have exactly the same capacity for fairness. All other
parameters are identical across the three models. We have also performed detailed ex-
periments varying several of these parameters and the results are consistent (4-way
processor, BTB size, I-cache latency, etc.). For BLISS, we fully model contention for
the L2-cache bandwidth between BB-cache misses and I-cache or D-cache misses. Our
graphs present two sets of results for BLISS: without (BLISS) and with (BLISS-hints)
using the prediction hints in the BBDs. We do not discuss BLISS-hints in details due to
space limitations.

We study 12 SPEC CPU2000 benchmarks using their reference datasets [7]. The
benchmarks are compiled at the -O3 optimization level. In all cases, we skip the first

Improving Instruction Delivery with a Block-Aware ISA 535

Table 1. The microarchitecture parameters for the simulations. The common parameters apply to
all three models (base, FTB, BLISS).

Base FTB BLISS
Fetch Width 8 instructions/cycle |1 fetch block/cycle |1 basic block/cycle
Target BTB: 2K entries FTB: 2K entries BB-cache: 2K entries
Predictor 4-way, 1-cycle access|4-way, 1-cycle access|4-way, 1-cycle access
8 entries per cache line
Decoupling Queue |- FTQ: 4 entries BBQ: 4 entries
Common Processor Parameters
Hybrid gshare: 4K counters
Predictor PAg L1: 1K entries, PAg L2: 1K counters
selector: 4K counters
RAS 32 entries with shadow copy
I-cache 32 KBytes, 4-way, 64B blocks, 1 port, 2-cycle access pipelined

Issue/Commit Width|8 instructions/cycle
IQ/RUU/LSQ Size |64/128/128 entries

FUs 8 INT & 6 FP

D-cache 64 KBytes, 4-way, 64B blocks, 2 ports, 2-cycle access pipelined

L2 cache 1 MByte, 8-way, 128B blocks, 1 port, 12-cycle access, 4-cycle repeat rate
Main memory 100-cycle access

billion instructions and simulate another billion instructions for detailed analysis. We
generate BLISS executables using a static binary translator, which can handle arbitrary
programs written in any language. The generation of BLISS executable could also be
done using a transparent, dynamic compilation framework [8]. Despite introducing the
block descriptors, BLISS executables are actually up to 16% smaller than the original
binaries, as BLISS allows aggressive code size optimizations such as branch removal
and common block elimination. The evaluation of code size optimizations is omitted
due to space limitations.

Our simulation framework is based on the Simplescalar/PISA 3.0 toolset [9], which
we modified to add the FTB and BLISS front-end models. For energy measurements,
we use the Wattch framework with the cc3 power model [10]. Energy consumption was
calculated for a 0.10pm process with a 1.1V power supply. The reported Total Energy
includes all the processor components (front-end, execution core, and all caches).

5 Evaluation

Figure 4 presents IPC and IPC improvement for the BLISS front-end over the base
and FTB front-ends for the 8-way superscalar processor. BLISS outperforms the base
front-end for all benchmarks with an average IPC improvement of 20%. The hardware-
based FTB front-end outperforms the base for only half of the benchmarks and most
of the 7% average IPC improvement is due to vortex. BLISS outperforms FTB for
all benchmarks but vortex, with an average IPC advantage of 13% (up to 18% with
BLISS-hints).

Figure 4 also presents total energy savings. BLISS provides a 14% total energy
improvement over the base design. The advantage is mostly due to the elimination of a

536 Ahmad Zmily, Earl Killian, and Christos Kozyrakis

35 ‘ OBase MFTB OBLISS OBLISS-Hints

3.0
2.5 1 -
20 o

il | i il

gzip gce crafty gap vortex twolf wupwise applu mesa art equake apsi AVG

IPC

30% o TR R [mFTB OBLISS OBLISS-Hints |—,

25%
20%
15% A
10% A
5% A
0% 7
-5%
-10%

% IPC Improvement over Base

gzip gce crafty gap vortex twolf wupwise applu mesa art equake apsi AVG

- 27%30% 21% 33%36% B FTB OBLISS OBLISS-Hints

15%

10% =

5%

0%

% Energy Improvement over
Base

gzip gce crafty gap vortex twolf wupwise applu mesa art equake apsi AVG

Fig. 4. IPC, percentage of IPC improvement, and percentage of total energy improvement for the
FTB and BLISS front-ends over the base fornt-end design.

significant number of pipeline flushes due to control-flow misprediction. BLISS offers a
7% energy advantage over FTB which allows similar energy optimizations in the front-
end but suffers from higher number of control-flow mispredictions. It is important to
note from Figure 4 that BLISS provides both performance and energy advantages over
the base and FTB.

Figure 5 explains the basic performance advantage of BLISS over the base and
FTB design. Compared to the base, BLISS reduces by 36% the number of pipeline
flushes due to target and direction mispredictions. These flushes have a severe perfor-
mance impact as they empty the full processor pipeline. Flushes in BLISS are slightly
more expensive than in the base design due to the longer pipeline, but they are less
frequent. The BLISS advantage is due to the availability of control-flow information
from the BB-cache regardless of I-cache latency and the accurate indexing and judi-
cious use of the hybrid predictor. The FTB front-end has a significantly higher number
of pipeline flushes compared to the BLISS front-end as block recreation affects the pre-
diction accuracy of the hybrid predictor due to longer training and increased interfer-
ence. Both BLISS and FTB allow for a decoupled front-end with instruction prefetch-
ing. BLISS enables I-cache prefetching though the BBQ which reduces the number of
I-cache misses by 24% on average for the benchmarks studied. Although the BLISS
L2-cache serves an additional type of misses from the BB-cache, BLISS number of

Improving Instruction Delivery with a Block-Aware ISA 537

OBase WFTB OBLISS OBLISS-Hints 104

oo~ =
o » o
]

o oo
o s

Normalized number of
pipeline flushes

gce crafty vortex mesa equake AVG

Fig. 5. Normalized number of pipeline flushes for the base, FTB, BLISS for representative bench-
marks. The average is across all 12 benchmarks.

OFTB EBLISS OBLISS-Hints ‘

-
=3
<]

o
©
@

o
©
o

o
©
X

FTB and Basic-Block cache hit rates

gce crafty vortex mesa equake AVG

Fig. 6. Normalized FTB and BB-cache hit rates for representative benchmarks. The average is
across all 12 benchmarks.

L2-cache accesses and misses are slightly better than the numbers for the FTB design.
BLISS has a 10% higher number of L2-cache accesses, and 2% lower number of L2-
cache misses compared to the base design for the benchmarks studied. The increased
number of L2-cache accesses for BLISS and FTB designs is mainly due to instruction
prefetching.

Figure 6 shows the BB-cache and FTB hit rates to evaluate the effectiveness of the
FTB in forming fetch-blocks and the BB-cache in delivering BBDs. Since the FTB
returns a fall-through block address even when it misses in order to avoid storing the
fall-through blocks, we define its miss rate as the number of misfetches divided over
the number of FTB accesses. A misfetch occurs when the decoder detects that the block
fetched from the FTB is wrong and needs to be updated and a new block to be fetched.
At the same storage capacity, the BLISS BB-cache achieves a 2% to 3% higher hit rate
than the FTB as the BB-cache avoids block splitting and recreation that occur when
branches change behavior or when the cache capacity cannot capture the working set
of the benchmark. The FTB has an advantage for programs like vortex that stress
the capacity of the target cache and include large fetch blocks. For vortex, the FTB
packs 9.5 instructions per entry (multiple basic blocks), while the BB-cache packs 5.5
instructions per entry (single basic block).

6 Related Work

Certain ISAs allow for basic blocks descriptors, interleaved with regular operations in
the instruction stream (e.g. prepare-to-branch instructions in [11, 12]). They allow for

538 Ahmad Zmily, Earl Killian, and Christos Kozyrakis

target address calculation and instruction prefetching a few cycles before the branch
instruction is decoded. The block-structured ISA (BSA) by Patt et al. [5] defines basic
blocks of reversed ordered instructions as atomic execution units in order to simplify in-
struction renaming and scheduling. BLISS goes a step further by separating basic block
descriptors from regular instructions which allows for instruction fetch bandwidth im-
provements. The benefits from BSA and BLISS are complimentary. The decoupled
control-execute architectures use a separate ISA with distinct architectural state for
control-flow calculation [13, 14]. The BBDs in BLISS are not a stand-alone ISA and do
not define any state, eliminating the deadlock scenarios with decoupled control-execute
ISAs.

Block-based front-end architectures were introduced by Yeh and Patt [15], with ba-
sic block descriptors formed by hardware without any additional architectural support.
Decoupled front-end techniques have been explored by Calder and Grunwald [16] and
Stark et al. [17]. Reinman et al. combined the two techniques in a comprehensive front-
end with prefetching capabilities [2, 3]. Our work improves their design using explicit
ISA support for basic block formation. Significant amount of front-end research has
also focused on trace caches [18-20]. Trace caches have been shown to work well with
basic blocks defined by hardware [21]. One can form streams or traces on top of the
basic blocks in the BLISS ISA. BLISS provides two degrees of freedom for code lay-
out optimizations (blocks and instructions), which could be useful for stream or trace
formation. Exploring such approaches is an interesting area for future work.

7 Conclusions

We present a block-aware ISA that addresses basic challenges in the front-end of wide
superscalar processors. The ISA defines basic block descriptors in addition to and sep-
arately from the actual instructions. Software-defined basic blocks allow a decoupled
front-end with highly accurate control-flow speculation, which leads to 20% IPC and
14% energy advantages over conventional designs. The ISA-supported front-end also
outperforms (13% IPC and 7% energy) advanced decouple front-ends that dynamically
build fetch blocks in hardware. Overall, this work establishes the potential of using
expressive ISAs to address difficult hardware problems in modern processors.

Acknowledgements

This work was supported by a Stanford OTL grant.

References

1. R. Ronen, A. Mendelson, et al. Coming Challenges in Microarchitecture and Architecture.
Proceedings of the IEEE, 89(3), March 2001.

2. G. Reinman, B. Calder, and T. Austin. Fetch Directed Instruction Prefetching. In Intl. Sym-
posium on Microarchitecture, Haifa, Israel, November 1999.

3. G. Reinman, C. Calder, and T. Austin. Optimizations Enabled by a Decoupled Front-End
Architecture. I[EEE TC, 50(40), April 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Improving Instruction Delivery with a Block-Aware ISA 539

A. Ramirez, J. Larriba-Pey, and M. Valero. Branch Prediction Using Profile Data. In EuroPar
Conference, Manchester, UK, August 2001.

. S. Melvin and Y. Patt. Enhancing Instruction Scheduling with a Block-structured ISA. Intl.

Journal on Parallel Processing, 23(3), June 1995.

. T. Chen and J.L. Baer. A Performance Study of Software and Hardware Data Prefetching

Schemes. In Intl. Symposium on Computer Architecture, Chicago, IL, April 1994.

. J. Henning. SPEC CPU2000: Measuring Performance in the New Millennium. /EEE Com-

puter, 33(7), July 2000.

. V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent Dynamic Optimization

System. In the Proceedings of the Conference on Programming Language Design and Im-
plementation, Vancouver, Canada, June 2000.

. D. Burger and M. Austin. Simplescalar Tool Set, Version 2.0. Technical Report CS-TR-97-

1342, University of Wisconsin, Madison, June 1997.

D. Brooks, V. Tiwari, , and M. Martonosi. Wattch: A Framework for Architectural-Level
Power Analysis and Optimizations. In Intl. Symposium on Computer Architecture, Vancou-
ver, BC, Canada, June 2000.

R. Wedig and M. Rose. The Reduction of Branch Instruction Execution Overhead Using
Structured Control Flow. In Intl. Symposium on Computer Architecture, Ann Arbor, MI,
June 1984.

V. Kathail, M. Schlansker, and B. Rau. HPL PlayDoh Architecture Specification. Technical
Report HPL-93-80, HP Labs, 1994.

N. Topham and K. McDougall. Performance of the Decoupled ACRI-1 Architecture: the
Perfect Club. In Intl. Conference on High-Performance Computing and Networking, Milan,
Italy, May 1995.

R. Manohar and M. Heinrich. The Branch Processor Architecture. Technical Report CSL-
TR-1999-1000, Cornell Computer Systems Laboratory, November 1999.

T. Yeh and Y. Patt. A Comprehensive Instruction Fetch Mechanism for a Processor Support-
ing Speculative Execution. In Intl. Symposium on Microarchitecture, Portland, OR, Decem-
ber 1992.

B. Calder and D. Grunwald. Fast and Accurate Instruction Fetch and Branch Prediction. In
Intl. Symposium on Computer Architecture, Chicago, IL, April 1994.

J. Stark, P. Racunas, and Y. Patt. Reducing the Performance Impact of Instruction Cache
Misses by Writing Instructions into the Reservation Stations Out-of-Order. In Intl. Sympo-
sium on Microarchitecture, Research Triangle Park, NC, December 1997.

D. Friendly, S. Patel, and Y. Patt. Alternative Fetch and Issue Techniques from the Trace
Cache Mechanism. In Intl. Symposium on Microarchitecture, Research Triangle Park, NC,
December 1997.

Q. Jacobson, E. Rotenberg, and J. Smith. Path-based Next Trace Prediction. In Intl. Sympo-
sium on Microarchitecture, Research Triangle Park, NC, December 1997.

S. Patel, M. Evers, and Y. Patt. Improving Trace Cache Effectiveness with Branch Promotion
and Trace Packing. In Intl. Symposium on Computer Architecture, Barcelona, Spain, June
1998.

S. Jourdan et al. Extended Block Cache. In Intl. Symposium on High-Performance Computer
Architecture, Toulouse, France, January 2000.

	Improving Instruction Delivery with a Block-Aware ISA
	1 Introduction
	2 Block-Aware Instruction Set Architecture
	3 Decoupled Front-End for the Block-Aware ISA
	4 Methodology
	5 Evaluation
	6 Related Work
	7 Conclusions
	References

