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Renaissance for Vector Architectures
• Declared dead about a decade ago

– Did not fit in a single-chip at the time
– Did not match the important workloads of the time 

(desktop)

• Resurfacing for several important workloads
– Multimedia processing

• Berkeley VIRAM, Stanford Imagine
• Intel SSE-2, Motorola Altivec, AMD 3DNow!, … 

– Telecommunications & networking
• Intel IXS, Philips CVP, Broadcom Calisto

– Scientific computing & bioinformatics
• NEC Earth Simulator, Cray X1, Alpha Tarantula
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Proof of Concept [Micro’02]

• VIRAM vector processor
– Single-issue, in-order, no vector caches
– 32 vector registers, 32 64-bit elements per register
– 2 arithmetic & 1 load/store vector units, 4 parallel lanes

• 10x speedup over OOO superscalar and wide VLIW 
for EEMBC benchmarks
– Multimedia & telecommunications workload

10.8

2.7 2.6

7.5

4.9

15.4

7.1

10.5
11.4

0

5

10

15

20

Rgb2cmyk Rgb2yiq Filter Cjpeg Djpeg Autocor Convenc Bital Fft Viterbi Geom.
Mean

Pe
rfo

rm
an

ce
 / 

M
H

z

4-way OO Superscalar 5 to 8-way VLIW VIRAM

43.8 107.9



4© C. Kozyrakis, 6/2003

Advantages of Vector Architectures
• Most efficient way to exploit data-level parallelism

– High computation throughput at low complexity & power
• Many independent operations per vector instruction

– Require high memory bandwidth, not low latency
• Regular memory access patterns

– Scale with CMOS technology if long vectors available
– Use mature compiler technology

• Orthogonal to architectures for ILP and TLP
– Superscalar or VLIW with vector unit

• E.g. Cray X1, Alpha Tarantula
– Parallel vector processors (SMP, CMP, …)

• E.g. NEC Earth Simulator, Cray X1, Broadcom Calisto
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Technical Obstacles to Wide Adoption
1. Complexity of vector register file (VRF)

– Large SRAM array with 3N ports for N functional units
• Area O(N2), latency O(N), power O(logN)

– Performance issue for short vector lengths
• Limits vector processors to N≈3  functional units (VFUs)

2. Expensive to implement precise exceptions
– Tens of pending operations ⇒ large & complex ROB

• ROB must support chaining (vector forwarding)
– Large, fully associative TLB required

• To translate all addresses for a vector load/store
• Guarantee for forward progress between exceptions
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Technical Obstacles to Wide Adoption
• 3.   Cost of a large, on-chip, multi-bank memory

– Need high bandwidth for vector loads/stores
• Large on-chip memories increase chip cost
• Small on-chip caches don’t work well with vectors

– Off-chip, high bandwidth memory is economical
• But introduces significant latency overhead for vector 

loads/stores
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This Work
• CODE: a vector microarchitecture that

– Efficiently scales to many functional units
– Implements precise exceptions at negligible cost
– Tolerates the latency of off-chip memory systems

• Not presented  ⇒ see paper for results

• Outline 
– Motivation
– CODE microarchitecture overview
– Performance evaluation & comparison
– Implementation of precise exceptions
– Conclusion and future work
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Traditional Vector Processor Organization
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CODE Overview
Clustered Organization for Decoupled Execution
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CODE Overview
Clustered Organization for Decoupled Execution
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CODE Overview
Clustered Organization for Decoupled Execution
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CODE Overview
Clustered Organization for Decoupled Execution
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Key Advantages
• Separates the two functions of the centralized VRF

– Stage operands for a VFU  ⇒ local VRF in each cluster
• The VRF in each cluster has fixed complexity
• Number/area/power for registers O(N), latency O(1)

– Communication between VFUs ⇒ inter-cluster network
• Does not have to be a full crossbar
• Network organization is a separate design trade-off

• Clusters are transparent at the instruction set level
– Flexible mapping of architectural to physical registers

• Register values can move to the FUs that use them
– Number of physical registers is unrestricted

• Allows for precise exceptions support
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Potential Disadvantage
• Number of inter-cluster transfers

• Worst case is 6 vector transfers per instruction
– Can hurt performance significantly

• Clusters are idling while waiting for data
– Can hurt complexity significantly

• Complexity of network can cancel simplicity of VRF

• How to reduce effect of inter-cluster transfers
– Minimize number of transfers

• Provide a sufficient number of vector registers per cluster
• Preferably, send instructions where their operands are

– Hide latency of transfers with extensive decoupling
• Use instruction queues within clusters
• Allow chaining to and from inter-cluster transfers
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Experimental Methodology 
• IRAM vector instruction set

– 32 vector registers, 32 64-bit elements/register
– CODE equally applicable to Cray X1 or Alpha Tarantula

• Trace-driven, parameterized, performance model
– Can vary: # & mix of clusters, # of registers/cluster, # of 

lanes, issue policy, network bandwidth & latency, memory 
system characteristics 

• Default memory system is that of the VIRAM prototype
– Limited to single instruction issue and one VFU per cluster

• Applications: EEMBC benchmarks
– Highly vectorizable code with short and long vectors
– Traces from IRAM vectorizing compiler & ISA simulator
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Instruction Issue Policy

• How to select a cluster for each vector instruction?
– Random, minimize # of transfers, minimum # of 

transfers unless too much work imbalance
• This graph:

– Relative performance with 2 clusters per instr. Type
• Normalized to results with random selection

– Load approximated with occupancy of instruction queue
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Comparison to VIRAM
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• Same area, memory system, clock, peak throughput
– 2 integer VFUs, 1 load/store VFU

• CODE:
– Decoupling hides latency of inter-cluster transfers

• But also hides memory latency for strided/indexed accesses
– CODE is 20% faster than VIRAM

• Even for multi-lane implementation of both approaches
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Precise Vector Exceptions
• Key insight: 

– Exploit extra vector registers and renaming
– Don’t need to modify the vector cluster design

• Changes in issue logic for precise exceptions
– Don’t deallocate registers with old values until 

instruction known to commit without exceptions
– Use history buffer to log changes in renaming table

• Used to restore safe mappings on exceptions

• Remove large TLB requirement with ISA change
– Allow faulting instruction to partially commit

• All elements until first one to cause exception
– Large TLB is now a performance optimization only
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Performance Loss due to Precise Exceptions
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• Higher pressure for physical registers
– Issue logic stalls & more inter-cluster transfers

• Performance loss: ~5% with r=8 registers per cluster
– Performance loss can be higher for FP applications

• If arithmetic exceptions are of interest
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Related Work
• Vector & data-parallel processors

– Decoupling of load/stores [Espasa96][Asanovic98]
– Hierarchical/distributed register file [Rixner00]

• Clustered ILP processors
– Superscalar

• 21264 [Kessler99], multi-cluster architecture [Farkas97]
• ILDP [Kim02]
• Many others… 

– VLIW
• Clustered VLIW [Nicolau92][Fisher98][Gonzalez00]
• Many others… 
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Clustered Vectors Vs. Clustered SS/VLIW

• Clustering also used with superscalar & VLIW
– Same motivation

• More VFUs with simple register file, ROB, instr. window  
– Difficult to hide latency of inter-cluster transfers

• Always slower than ideal, centralized, architecture

• Why is clustering easier with CODE?
– Can tolerate the latency of inter-cluster transfers

• Vectors tolerate latency
• Decoupling between clusters helps further with latency

– Lower instruction issue bandwidth requirements
• Issuing fewer instructions per cycle simplifies issue logic
• Can implement much smarter issue policies
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Conclusions
• CODE: a scalable vector architecture

– Clustered vector register file
– Extensive decoupling

• Overcomes the limitations of vector processors
– Scales to 8 functional units 

• Up to 70% performance improvement over 4-VFU design
• Without complicating register file, without wide-issue
• Works with applications with short vectors

– Can support precise vector instructions
• At a 5% performance loss

– Can tolerate latency of off-chip memory
• See paper for details


