
Overcoming the Limitations of
Conventional Vector Processors

Christos Kozyrakis David Patterson
Stanford University U.C. Berkeley

http://csl.stanford.edu/~christos

2© C. Kozyrakis, 6/2003

Renaissance for Vector Architectures
• Declared dead about a decade ago

– Did not fit in a single-chip at the time
– Did not match the important workloads of the time

(desktop)

• Resurfacing for several important workloads
– Multimedia processing

• Berkeley VIRAM, Stanford Imagine
• Intel SSE-2, Motorola Altivec, AMD 3DNow!, …

– Telecommunications & networking
• Intel IXS, Philips CVP, Broadcom Calisto

– Scientific computing & bioinformatics
• NEC Earth Simulator, Cray X1, Alpha Tarantula

3© C. Kozyrakis, 6/2003

Proof of Concept [Micro’02]

• VIRAM vector processor
– Single-issue, in-order, no vector caches
– 32 vector registers, 32 64-bit elements per register
– 2 arithmetic & 1 load/store vector units, 4 parallel lanes

• 10x speedup over OOO superscalar and wide VLIW
for EEMBC benchmarks
– Multimedia & telecommunications workload

10.8

2.7 2.6

7.5

4.9

15.4

7.1

10.5
11.4

0

5

10

15

20

Rgb2cmyk Rgb2yiq Filter Cjpeg Djpeg Autocor Convenc Bital Fft Viterbi Geom.
Mean

Pe
rfo

rm
an

ce
 /

M
H

z

4-way OO Superscalar 5 to 8-way VLIW VIRAM

43.8 107.9

4© C. Kozyrakis, 6/2003

Advantages of Vector Architectures
• Most efficient way to exploit data-level parallelism

– High computation throughput at low complexity & power
• Many independent operations per vector instruction

– Require high memory bandwidth, not low latency
• Regular memory access patterns

– Scale with CMOS technology if long vectors available
– Use mature compiler technology

• Orthogonal to architectures for ILP and TLP
– Superscalar or VLIW with vector unit

• E.g. Cray X1, Alpha Tarantula
– Parallel vector processors (SMP, CMP, …)

• E.g. NEC Earth Simulator, Cray X1, Broadcom Calisto

5© C. Kozyrakis, 6/2003

Technical Obstacles to Wide Adoption
1. Complexity of vector register file (VRF)

– Large SRAM array with 3N ports for N functional units
• Area O(N2), latency O(N), power O(logN)

– Performance issue for short vector lengths
• Limits vector processors to N≈3 functional units (VFUs)

2. Expensive to implement precise exceptions
– Tens of pending operations ⇒ large & complex ROB

• ROB must support chaining (vector forwarding)
– Large, fully associative TLB required

• To translate all addresses for a vector load/store
• Guarantee for forward progress between exceptions

6© C. Kozyrakis, 6/2003

Technical Obstacles to Wide Adoption
• 3. Cost of a large, on-chip, multi-bank memory

– Need high bandwidth for vector loads/stores
• Large on-chip memories increase chip cost
• Small on-chip caches don’t work well with vectors

– Off-chip, high bandwidth memory is economical
• But introduces significant latency overhead for vector

loads/stores

7© C. Kozyrakis, 6/2003

This Work
• CODE: a vector microarchitecture that

– Efficiently scales to many functional units
– Implements precise exceptions at negligible cost
– Tolerates the latency of off-chip memory systems

• Not presented ⇒ see paper for results

• Outline
– Motivation
– CODE microarchitecture overview
– Performance evaluation & comparison
– Implementation of precise exceptions
– Conclusion and future work

8© C. Kozyrakis, 6/2003

Traditional Vector Processor Organization

Scalar
Core

$D $I

Vector Unit

Ve
ct

or
R

eg
is

te
rs …Issue Memory

Hierarchy

9© C. Kozyrakis, 6/2003

CODE Overview
Clustered Organization for Decoupled Execution

Scalar
Core

$D $I

Vector Unit
Vector
Cluster

Vector
Cluster

Vector
Cluster

…

• Vector unit organized as collection of clusters

Memory
Hierarchy

10© C. Kozyrakis, 6/2003

CODE Overview
Clustered Organization for Decoupled Execution

Scalar
Core

$D $I

Vector Unit

Memory
Hierarchy

Vector
Cluster

Vector
Cluster

Vector
Cluster

…

Vector
Regs

Vector
Regs

Vector
Regs

• Each cluster is a simple vector processor with 1 VFU

11© C. Kozyrakis, 6/2003

CODE Overview
Clustered Organization for Decoupled Execution

Scalar
Core

$D $I

Vector Unit

In
te

r-
C

lu
st

er

N

et
w

or
k

Vector
Cluster

Vector
Cluster

Vector
Cluster

…

Vector
Regs

Vector
Regs

Vector
Regs

• Clusters communicate through explicit transfers over network

Memory
Hierarchy

12© C. Kozyrakis, 6/2003

CODE Overview
Clustered Organization for Decoupled Execution

Scalar
Core

$D $I

Vector Unit

In
te

r-
C

lu
st

er

N

et
w

or
k

Vector
Cluster

Vector
Cluster

Vector
Cluster

…

Vector
Regs

Vector
Regs

Vector
Regs

• Issue logic steers instructions and indicates need for transfers

Rename
& Issue

Memory
Hierarchy

13© C. Kozyrakis, 6/2003

Key Advantages
• Separates the two functions of the centralized VRF

– Stage operands for a VFU ⇒ local VRF in each cluster
• The VRF in each cluster has fixed complexity
• Number/area/power for registers O(N), latency O(1)

– Communication between VFUs ⇒ inter-cluster network
• Does not have to be a full crossbar
• Network organization is a separate design trade-off

• Clusters are transparent at the instruction set level
– Flexible mapping of architectural to physical registers

• Register values can move to the FUs that use them
– Number of physical registers is unrestricted

• Allows for precise exceptions support

14© C. Kozyrakis, 6/2003

Potential Disadvantage
• Number of inter-cluster transfers

• Worst case is 6 vector transfers per instruction
– Can hurt performance significantly

• Clusters are idling while waiting for data
– Can hurt complexity significantly

• Complexity of network can cancel simplicity of VRF

• How to reduce effect of inter-cluster transfers
– Minimize number of transfers

• Provide a sufficient number of vector registers per cluster
• Preferably, send instructions where their operands are

– Hide latency of transfers with extensive decoupling
• Use instruction queues within clusters
• Allow chaining to and from inter-cluster transfers

15© C. Kozyrakis, 6/2003

Experimental Methodology
• IRAM vector instruction set

– 32 vector registers, 32 64-bit elements/register
– CODE equally applicable to Cray X1 or Alpha Tarantula

• Trace-driven, parameterized, performance model
– Can vary: # & mix of clusters, # of registers/cluster, # of

lanes, issue policy, network bandwidth & latency, memory
system characteristics

• Default memory system is that of the VIRAM prototype
– Limited to single instruction issue and one VFU per cluster

• Applications: EEMBC benchmarks
– Highly vectorizable code with short and long vectors
– Traces from IRAM vectorizing compiler & ISA simulator

16© C. Kozyrakis, 6/2003

Instruction Issue Policy

• How to select a cluster for each vector instruction?
– Random, minimize # of transfers, minimum # of

transfers unless too much work imbalance
• This graph:

– Relative performance with 2 clusters per instr. Type
• Normalized to results with random selection

– Load approximated with occupancy of instruction queue

1 0.96
1.09

0

0.25

0.5

0.75

1

1.25

Rgb2cmyk Rgb2yiq Filter Cjpeg Djpeg Autocor Convenc Bital Fft Viterbi Average

R
el

at
iv

e
Pe

rfo
rm

an
ce

Random MinTrans MinTrans & LoadBalance

17© C. Kozyrakis, 6/2003

Comparison to VIRAM

42
41

26
21

-50

0

50

100

150

200

250

300

Rgb2cmyk Rgb2yiq Filter Cjpeg Djpeg Autocor Convenc Bital Fft Viterbi Average

%
 Im

pr
ov

em
en

t

Lanes=1 Lanes=2 Lanes=4 Lanes=8

• Same area, memory system, clock, peak throughput
– 2 integer VFUs, 1 load/store VFU

• CODE:
– Decoupling hides latency of inter-cluster transfers

• But also hides memory latency for strided/indexed accesses
– CODE is 20% faster than VIRAM

• Even for multi-lane implementation of both approaches

18© C. Kozyrakis, 6/2003

1

2

3

4

5

6

7

8

4 6 8 12 16

Number of FUs (Clusters)

A
ve

ra
ge

 S
pe

ed
up

Lanes=1 Lanes=2 Lanes=4 Lanes=8

Scalability

19© C. Kozyrakis, 6/2003

1

2

3

4

5

6

7

8

4 6 8 12 16

Number of FUs (Clusters)

A
ve

ra
ge

 S
pe

ed
up

Lanes=1 Lanes=2 Lanes=4 Lanes=8

Scalability

Lanes exploit data-level parallelism
(long vectors) in the application

20© C. Kozyrakis, 6/2003

1

2

3

4

5

6

7

8

4 6 8 12 16

Number of FUs (Clusters)

A
ve

ra
ge

 S
pe

ed
up

Lanes=1 Lanes=2 Lanes=4 Lanes=8

Scalability

Clusters exploit instruction-level parallelism
& long vectors in the application

21© C. Kozyrakis, 6/2003

1

2

3

4

5

6

7

8

4 6 8 12 16

Number of FUs (Clusters)

A
ve

ra
ge

 S
pe

ed
up

Lanes=1 Lanes=2 Lanes=4 Lanes=8

Scalability

~6.8x improvement over 4 clusters/1 lane

22© C. Kozyrakis, 6/2003

1

2

3

4

5

6

7

8

4 6 8 12 16

Number of FUs (Clusters)

A
ve

ra
ge

 S
pe

ed
up

Lanes=1 Lanes=2 Lanes=4 Lanes=8

Scalability

Limited by single instruction issue and
available instruction-level parallelism

23© C. Kozyrakis, 6/2003

Precise Vector Exceptions
• Key insight:

– Exploit extra vector registers and renaming
– Don’t need to modify the vector cluster design

• Changes in issue logic for precise exceptions
– Don’t deallocate registers with old values until

instruction known to commit without exceptions
– Use history buffer to log changes in renaming table

• Used to restore safe mappings on exceptions

• Remove large TLB requirement with ISA change
– Allow faulting instruction to partially commit

• All elements until first one to cause exception
– Large TLB is now a performance optimization only

24© C. Kozyrakis, 6/2003

Performance Loss due to Precise Exceptions

14

5
01

-5
0
5

10
15
20
25
30
35
40
45

Rgb2cmyk Rgb2yiq Filter Cjpeg Djpeg Autocor Convenc Bital Fft Viterbi Average

%
 S

lo
w

do
w

n

r=4 r=8 r=12 r=16

• Higher pressure for physical registers
– Issue logic stalls & more inter-cluster transfers

• Performance loss: ~5% with r=8 registers per cluster
– Performance loss can be higher for FP applications

• If arithmetic exceptions are of interest

25© C. Kozyrakis, 6/2003

Related Work
• Vector & data-parallel processors

– Decoupling of load/stores [Espasa96][Asanovic98]
– Hierarchical/distributed register file [Rixner00]

• Clustered ILP processors
– Superscalar

• 21264 [Kessler99], multi-cluster architecture [Farkas97]
• ILDP [Kim02]
• Many others…

– VLIW
• Clustered VLIW [Nicolau92][Fisher98][Gonzalez00]
• Many others…

26© C. Kozyrakis, 6/2003

Clustered Vectors Vs. Clustered SS/VLIW

• Clustering also used with superscalar & VLIW
– Same motivation

• More VFUs with simple register file, ROB, instr. window
– Difficult to hide latency of inter-cluster transfers

• Always slower than ideal, centralized, architecture

• Why is clustering easier with CODE?
– Can tolerate the latency of inter-cluster transfers

• Vectors tolerate latency
• Decoupling between clusters helps further with latency

– Lower instruction issue bandwidth requirements
• Issuing fewer instructions per cycle simplifies issue logic
• Can implement much smarter issue policies

27© C. Kozyrakis, 6/2003

Conclusions
• CODE: a scalable vector architecture

– Clustered vector register file
– Extensive decoupling

• Overcomes the limitations of vector processors
– Scales to 8 functional units

• Up to 70% performance improvement over 4-VFU design
• Without complicating register file, without wide-issue
• Works with applications with short vectors

– Can support precise vector instructions
• At a 5% performance loss

– Can tolerate latency of off-chip memory
• See paper for details

