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Exploiting Parallelism

• The main job of computer architects

– Exploit parallelism to design efficient architectures

• Best practice 

– First pick the best solution at each level

– Then make these solutions work well together

Instruction Level

Thread Level

Task Level SMP, NUMA, Clusters, DSM

MT, CMP, SMT

Superscalar, VLIW

Data Level ??

• How about data level parallelism ?

– Can we do something efficient about it?
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Multimedia Applications

• The killer-app for current and future systems

– 3D graphics, animation, speech and visual recognition, 

image and video processing, encryption

• Plenty of data-level parallelism

– They repeat same function over sequences of data

– Parallelism is explicit in the applications

• Characteristics to keep in mind

– Need high performance with real-time response

– Narrow data types (8 bit, 16 bit, 32 bit)

– Streaming IO data with little temporal locality



4

Multimedia on Embedded Systems

• Embedded and portable systems

– PDAs, set-top-boxes, game consoles, 

digital cameras, cellular phones

• Mobile-personal computing

– E.g. PDA with speech recognition

• Realities of consumer electronics

– Low cost

– Small code size, low power consumption

– Low energy consumption for portable devices

– Short hardware and software development cycles

• Processor should be easy to design, scale, and program

– Integration is often the key for new applications
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Technology Constraints

• Processor-memory performance gap

• Latency scaling of very long wires

• Exponentially increasing design and verification 

complexity
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Thesis

• It is possible to design efficient microprocessors for 

embedded multimedia systems with

– High performance

– Low energy/power consumption

– Low design complexity

– High scalability

• Basic arguments

– A vector architecture can exploit efficiently the data-

level parallelism in multimedia applications

– We can design on-chip, cost-effective memory systems 

that provide high bandwidth
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Outline

• Motivation and thesis

• The VIRAM instruction set for multimedia processing

• The VIRAM-1 vector microarchitecture and prototype 

media-processor

• The CODE vector microarchitecture

• Conclusions and future work

[David Martin, Krste Asanovic, Dave Judd, Rich Fromm]

[Sam Williams, Joe Gebis]
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VIRAM Instruction Set

• Vector load-store instruction set

– Coprocessor extension to MIPS-64 ISA

• Architecture state

– 32 general-purpose vector registers

– 16 flag registers

– Scalar registers for control, addresses, strides, etc

• Vector instructions

– Arithmetic: integer, floating-point, logical

– Load-store: unit-stride, strided, indexed

– Misc: vector processing (pack/unpack), flag processing 

(pop count)

– 90 unique instructions, 660 opcodes
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VIRAM ISA Enhancements

• Multimedia processing

– Support for multiple data-types (64b/32b/16b)

• Element/operation width specified with control register

– Saturated and fixed-point arithmetic

• Flexible multiply-add model without accumulators

– Simple element permutations for reductions and FFTs

– Conditional execution using the flag registers

• General-purpose systems

– TLB-based virtual memory 

• Separate TLB for vector memory accesses

– Hardware support for reduced context switch overhead

• Valid/dirty bits for vector registers

• Support for “lazy” save/restore of vector state
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VIRAM Compiler

• Based on Cray PDGCS compiler

– Extensive vectorization capabilities including outer-loop

– Automatic vectorization of narrow operations and 

reductions

– Lacks back-end optimizations

• Code motion, basic block scheduling

Optimizer

C

Fortran95

C++

Frontends Code Generators

Cray’s

PDGCS

T3D/T3E

SV2/VIRAM

C90/T90/SV1
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EEMBC: Vectorization
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EEMBC: Code Size
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Outline

• Motivation and thesis

• The VIRAM instruction set for multimedia processing

• The VIRAM-1 vector microarchitecture and prototype 

media-processor

• The CODE vector microarchitecture

• Conclusions and future work
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VIRAM-1 Block Diagram
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Modular Vector Unit Design

• Single 64b “lane” design replicated multiple times

– Reduces design and testing time

– Provides a simple scaling model (up or down) without major 
control or datapath redesign

• Most instructions require only intra-lane interconnect

– Tolerance to interconnect delay scaling
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VIRAM-1 Chips Statistics

• Technology: 0.18µm CMOS from IBM

– 6 layers copper, trench DRAM cell

• 335 mm2 die area

– 140mm2 DRAM, 70 mm2 logic

– 10mm2 per vector lane

• 120M transistors

– 112.5M DRAM, 7.5M logic

• 200 MHz, 2 Watts

• Peak vector performance

– Integer: 1.6/3.2/6.4 Gop/s 
(64b/32b/16b)

– Fixed-point: 2.4/4.8/9.6 Gop/s 
(64b/32b/16b)

– Floating-point: 1.6 Gflop/s (32b)
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EEMBC: Consumer
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EEMBC: Telecommunications
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EEMBC: Scalability
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Outline

• Motivation and thesis

• The VIRAM instruction set for multimedia processing

• The VIRAM-1 vector microarchitecture and prototype 

media-processor

• The CODE vector microarchitecture

• Conclusions and future work
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The CODE Microarchitecture

• Goal: improve on VIRAM-1

– Simplify the vector register file design

• Reduce the number of access ports per register

• Allow for more functional units per lane

– Tolerate higher memory latency

• Allow for higher clock frequency or slower processor-

memory interconnect

• Approach: reorganize vector lanes

– Composite organization

• Assign a small vector register file to each functional unit

– Decoupled execution

• Decouple instruction execution in each functional unit 

using instruction and data queues
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From VIRAM-1 to CODE (1)

• Vector lane in VIRAM-1

• Centralized vector register file feeds all FUs

• Deeply pipelined functional units
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From VIRAM-1 to CODE (2)

• Associate a few vector registers with each FU 

• Local register file has fixed number of access ports
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From VIRAM-1 to CODE (3)

• Network for inter-core vector register transfers 

• It can be a bus, a ring, a crossbar, etc…
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From VIRAM-1 to CODE (4)

• Data and instruction queues for decoupling 

• Decoupling of both memory & inter-core transfers
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From VIRAM-1 to CODE (5)

• Use vector registers for data queues 

• Saves area, simplifies design and control
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CODE Issue Logic

• Operation

– Issue instructions to vector cores

– Allocate core registers for instruction operands

– Indicate necessary inter-core register transfers

• Data structures

– Renaming table

• Maintains the physical location for each architectural 

registers

– A free-list for the local vector registers in each core

• It is very simple because

– It handles one vector instruction per cycle

– Everything is in-order
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CODE Block Diagram
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CODE vs. VIRAM-1

• Same area, same clock frequency (200 MHz), same 

memory system
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CODE: Latency Tolerance

• Slowdown over memory system with1 cycle memory latency

• Memory latency in processor cycles
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CODE: Precise Virtual Memory Exceptions

• Approach: use unallocated registers to maintain old register 

values until exception behavior is known

• It requires changes to the issue logic only

• History file for updates to the renaming table
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CODE: Scalability
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Conclusions

• It is possible to design efficient microprocessors for 

embedded multimedia systems with

– High performance

– Low energy/power consumption

– Low design complexity

– High scalability

• Thesis contributions

– Demonstrated the efficiency of the VIRAM architecture with 

multimedia tasks

– Presented & analyzed the VIRAM-1 media-processor

– Presented & analyzed the CODE vector microarchitecture

– Demonstrated that embedded DRAM is an appropriate 

technology for high bandwidth memory systems
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Future Work

• Further application development

• Languages & compilers for multimedia processing

• Improved memory systems for CODE

• Architectures for data-level & thread-level parallelism

• Specialized hardware engines for complicated tasks

• Exploit modularity for yield & reliability improvements
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