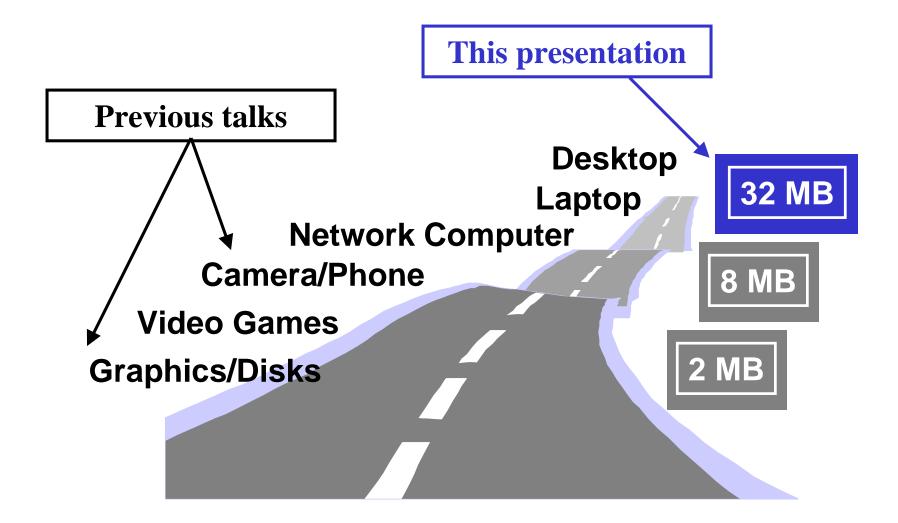
High-Performance Architectures for Embedded Memory Systems



Christoforos E. Kozyrakis

Computer Science Division University of California, Berkeley

kozyraki@cs.berkeley.edu
http://iram.cs.berkeley.edu/

Embedded DRAM systems roadmap

Outline

- Overview of general-purpose processors today
- Future processor applications & requirements
- Advantages and challenges of processor-DRAM integration
- Future microprocessor architectures
 - characteristics and features
 - compatibility and interaction with embedded DRAM technology
- Comparisons and conclusions

Current state-of-the-art processors (1)

- High performance processors
 - 64-bit operands, wide instruction issue (3-4)
 - dynamic scheduling, out-of-order execution, speculation
 - large multi-level caches
 - support for parallel systems
 - optimized for technical and/or commercial workloads
 - SIMD multimedia extensions (VIS, MAX, MMX, MDMX, Altivec)
 - 200 to 600 MHz, 20 to 80 Watts, 200 to 300 sq. mm
 - e.g. MIPS R10K, Pentium II, Alpha 21264, Sparc III

Current state-of-the-art processors (2)

- Embedded processors
 - 32/64-bit, single/dual issue, in-order execution
 - single-level (small) caches
 - code density improvements (Thump/MIPS16)
 - DSP/SIMD support
 - integrated I/O and memory controllers
 - some on-chip DRAM (up to 4MB)
 - optimized for low power, price/performance, MIPS/Watt
 - 50 to 250MHz, 0.3 to 4 Watts, 10 to 100 sq. mm
 - e.g. M32R, ARM-9, StrongARM, MIPS R5K, SH-4

Current microprocessor applications

- Desktop: technical workloads (e.g. CAD), office productivity tools
- Servers: file system workloads, transaction processing, decision support
- Embedded: variety of workloads, from printers to digital cameras
- Benchmarks:
 - desktop: SPEC95 (Int/FP)
 - servers: TPC C/D
 - embedded: Dhrystone

Future microprocessor applications

Personal mobile computing

- A single device is: PDA, video game, cell phone, pager, GPS, tape recorder, radio, TV remote...
- Basic interfaces: voice (speech recognition) and image (image/video processing)
- Small size, battery operated devices
- Media processing functions are the basic workload

Requirements on microprocessors

- High performance for multimedia:
 - real-time performance guarantees
 - Œ - support for continuous media data-types
 - fine-grain parallelism
 - coarse-grain parallelism
 - high-instruction reference locality, code density
 - high memory bandwidth
- Low power/energy consumption
- Low design/verification complexity, scalable design
- Small size/chip count

Embedded DRAM advantages (1)

- <u>High memory bandwidth</u>
 - make internal DRAM bandwidth available to processor
 - wide memory interfaces, custom organizations
 - multiple independent banks interconnected with processor through crossbar
 - how does it translate in performance?
- Low memory latency
 - no off-chip memory controller
 - no off-chip bus to arbitrate/drive
 - latency equal to inherent DRAM latency plus on-chip interconnect; <u>still longer than SRAM</u>

Embedded DRAM advantages (2)

- Energy/power efficiency
 - elimination of off-chip accesses through high capacitance bus
 - potential for lower power via on-demand memory module activation
- System size benefits
 - system-on-a-chip
 - no need for additional cache, external DRAM chips
 - potential for low pin count

Embedded DRAM challenges (1)

- <u>The biggest worry: eDRAM cost</u>
 - wafer cost
 - process steps compared to pure DRAM or logic processes
 - cost per DRAM bit
 - density of eDRAM compared to pure DRAM
 - yield
 - yield of DRAM part of die
 - yield of logic part of die
 - cost of testing

Embedded DRAM challenges (2)

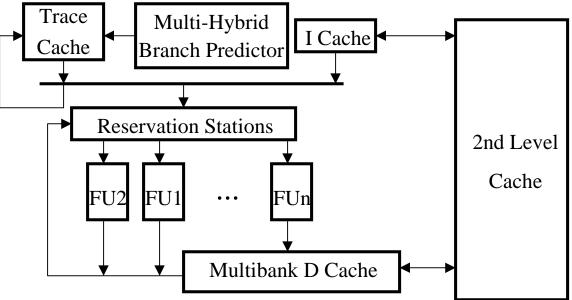
- <u>Performance of logic</u>
 - traditional DRAM processes have slow logic transistors
 - potential solutions for eDRAM processes:
 - 2 types of transistors: fast for logic, high Vt for DRAM
 - additional layers of metal
 - cost of process steps?
 - still logic transistor speed may be lower than that of pure logic processes
 - deep pipelined designs
 - use architectures that do rely only on clock frequency for performance; utilize forms of parallelism

Embedded DRAM challenges (3)

- <u>Power consumption of logic</u>
 - directly affects temperature, refresh rate and DRAM yield
 - low power logic design
 - intelligent power management in hardware (e.g. clock gating) and software (dynamic voltage scaling)
 - dynamic control of refresh rate
- <u>Yield of logic component</u>
 - logic has lower yield than DRAM
 - employ redundancy in processor design?
 - already done for some cache designs

Embedded DRAM challenges (4)

- <u>Cost/complexity of testing</u>
 - manufacture testing of a chip with a processor and tens of Mbytes DRAM is expensive
 - processor can be used as build-in-self-test (BIST) engine


- Organization of on-chip DRAM
 - width of interface: cache line or datapath width
 - hierarchical structures: multiple independent banks, organized in sub-bank sharing common bus
 - high random bandwidth
 - selective activation for lower power
 - memory crossbar instead of bus
 - caching for latency reduction
 - row buffers or virtual channels to keep more pages open
 - interaction with software?
 - optimum design point?
 - benefits vs. area overhead?

Trends in high-performance architecture

- Advanced superscalar processors
- VLIW: Very long instruction word processors (IA-64/EPIC)
- Single chip multiprocessors
- Reconfigurable processors
- Vector microprocessors (Vector IRAM)

Advanced superscalar processors

• Scale up current designs to issue more instructions (16-32)

- Major features:
 - dynamic instruction scheduling in hardware, out-of order execution
 - branch/dependence/stride/data/trace prediction buffers
 - large multibank caches

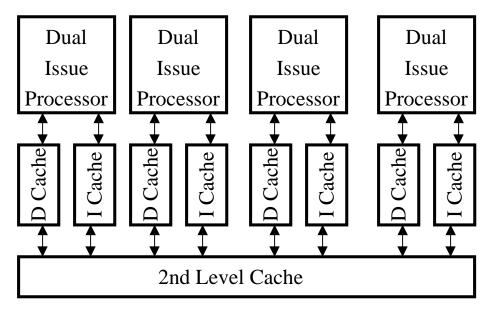
Advanced superscalar processors (2)

- Advantages
 - dynamic scheduling exploits run-time info
 - software compatibility
 - high-performance for current desktop applications
- Disadvantages
 - relies on high-speed logic and fast, large caches
 - unpredictable performance (high misprediction cost)
 - limited media processing support (MMX-like units)
 - high design/verification complexity
 - high power consumption due to extensive speculation
- eDRAM perspective
 - cannot fully utilize available eDRAM bandwidth
 - DRAM "unfriendly" environment (power, complexity, size)
 - DRAM for second-level cache?

VLIW processors (IA-64/EPIC)

• Very long instruction word scheme

▲ 128-bit long instruction						
Instruction 0	Instruction 1	Instruction 2	Template			

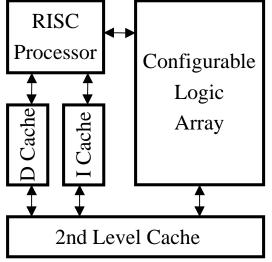

- Major features
 - instruction scheduling by compiler (dependence analysis, register renaming etc)
 - template specifies if instructions can be executed in parallel
 - software speculation and predicated (conditional) execution
 - large number of registers
 - multiple functional units
 - cache based designs

VLIW processors (IA-64/EPIC) (2)

- Advantages
 - simpler hardware
 - highly scalable
- Disadvantages
 - code size (loop unrolling, software pipelining)
 - compiler performance?
 - software compatibility
 - limited media processing support (MMX-like units)
- eDRAM perspective
 - cannot fully utilize available eDRAM bandwidth
 - requires high-speed logic to make up for run-time information
 - DRAM for second-level cache?

Single chip multiprocessors

• Place multiple processors on a single chip

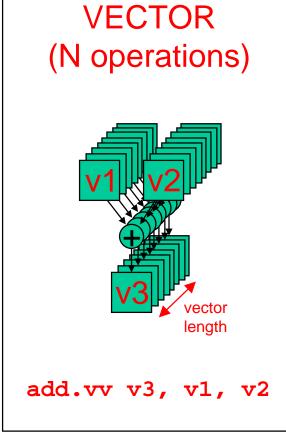

- Major features
 - symmetric multiprocessor system (shared memory system)
 - shared second-level cache
 - 4 to 8 uniprocessors, similar to current out-of-order designs

Single chip multiprocessors (2)

- Advantages
 - modular design
 - coarse-grained parallelism
- Disadvantages
 - difficulty of efficient parallel programming
 - limited media processing support
 - high power consumption
 - complexity of shared-memory protocols
- eDRAM perspective
 - can utilize bandwidth of multi-bank eDRAM
 - inherent redundancy
 - multiprocessors require large amount of memory

Reconfigurable Processors

• Use reconfigurable (programmable) logic, e.g. look-up tables


- Major features
 - meshes or hierarchical arrays of look-up tables
 - multiple configurations stored within the array
 - multiprocessor organizations with reconfigurable interconnects (RAW)

Reconfigurable Processors (2)

- Advantages
 - programmable/flexible functional unit(s)
 - any data width/function can be supported
 - fine and coarse grain parallelism
- Disadvantages
 - software path complexity (mapping high-level-languages to arrays, run-time environment)
 - power consumption and array size
- eDRAM perspective
 - on-chip DRAM for high-bandwidth data and configuration storage
 - array can be used as high-performance BIST engine
 - DRAM latency complicated programming/software tools

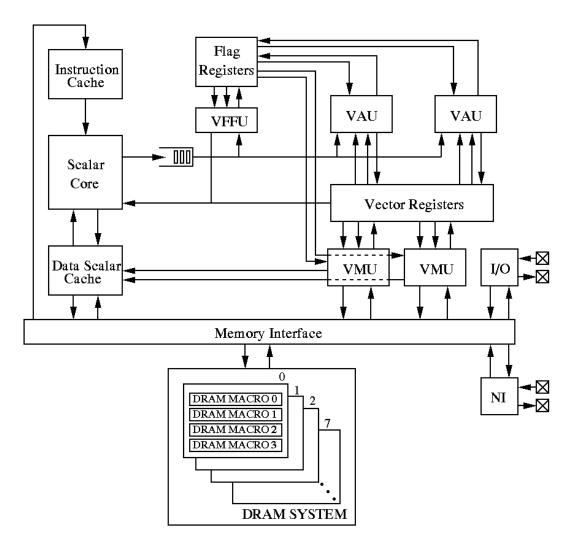
Vector microprocessors

- Vector instructions
 - (v3[i]=v1[i]+v2[i], for i=1 to N)
- Major features
 - vector coprocessor unit
 - instructions define operations on vectors (arrays) of data
 - vector register file
 - strided and indexed memory accesses
 - support for multiple data widths
 - support for DSP/fixed-point
 - conditional/speculative execution support through flag registers

Vector microprocessors (2)

- Advantages
 - predictable performance: in-order model, no caches
 - high performance for media processing
 - low power/energy consumption
 - performance through parallel pipelines, not just clock frequency [>
 - scalable 下
 - simple design: no complex issue/speculation logic
 - small code size: single instruction loops
- Disadvantages
 - cannot utilize random instruction-level or thread-level parallelism; just fine-grain parallelism
 - poor performance for many current desktop applications
 - requires high-bandwidth memory system

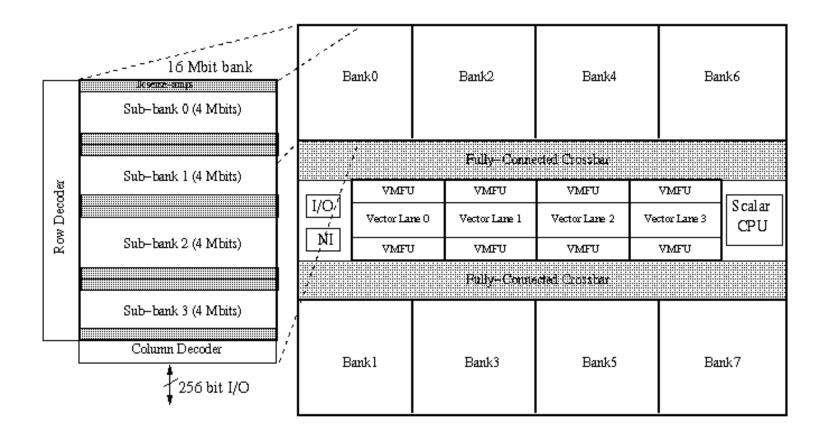
Vector processors and eDRAM


- Vector processors require multi-bank, high-bandwidth memory system:
 - multiple wide DRAM banks, crossbar interconnect
- Vector processors can tolerate DRAM latency
 - delayed vector pipelines
- eDRAM friendly environment
 - low power, low complexity, modest clock frequencies
- eDRAM testing
 - use vector processor as BIST engine; 10x faster than scalar processors
- Logic redundancy
 - use a redundant vector pipeline

Vector IRAM-1

- Scalar core
 - 2-way superscalar MIPS
 - 16KByte I/D caches
- Vector coprocessor
 - 64b, 32b, 16b data types
 - maximum vector length 32
 @64b, 64@ 32b or 128 @
 16b
 - 2 arithmetic, 2 load/store, 2 flag processing units
 - 4 64bit pipelines per functional unit
 - separate multi-ported TLB

- Memory system
 - 16Mbytes DRAM
 - 8 independent banks
 - 256b synchronous interface
 - crossbar interconnect for 12.8GB/sec aggregate bandwidth per direction
- I/O
 - 4 serial lines, 1Gb/s per direction
 - fast messaging though network interface connected to memory system


Vector IRAM-1 Block Diagram

Christoforos E. Kozyrakis U.C. Berkeley

Technology:	0.25 micron embedded DRAM-logic process
Memory:	16 MBytes
Die size:	350-400 mm ²
Vector pipelin	es: 4 64-bit (or 8 32-bit or 16 16-bit)
Clock Freque	cy: 200MHz scalar, vector, DRAM
Serial I/O:	4 lines @ 1 Gbit/s
Power:	~2 W
Performance:	1.6 GFLOPS ₆₄ – 6.4 GOPS ₁₆

VIRAM-1 Floorplan

Comparison: current desktop domain

	SS	VLIW	/ CMP	RC	VIRAM
SPEC Int	+	+	=	=	-
SPEC FP	+	+	+	=	+
TPC (DB)	=	=	+	-	=
SW Effort	+	=	=	-	=
Design Scalability	=	=	=	=	=
Design Complexity	-	=	=	+	=

Legend: + positive, = neutral, - negative

Comparison: personal mobile computing domain

	SS	VLIV	V CMP	RC	VIRAM
Real-time Perf.	—	=	=	=	+
Cont. Data Support	=	=	=	=	+
Energy/power	—	=	=	_	+
Code Size	=	-	=	=	+
Fine-grain parall.	=	=	=	+	+
Coarse-grain parall.	=	=	+	+	=
Memory BW	=	=	=	=	+
Design Scalability	=	=	=	=	=
Design Complexity	-	=	=	+	=

Comparison: eDRAM perspective

	SS	VLIW CMP		RC	VIRAM
BW Utilization	=	=	+	+	+
Latency Tolerance	_	=	=	_	+
Power Consumption	_	=	=	_	+
Need for Fast Logic	_	-	=	=	+
DRAM Testing	_	_	+	+	+
Logic Redundancy	_	-	+	+	+
Design Scalability	=	=	=	=	=
Design Complexity	_	=	=	+	=

Conclusions

- Unlikely that eDRAM will make it in the desktop highperformance microprocessors (at least for a while)
- Yet, microprocessor applications shifting from desktop domain to personal mobile computing domain
- eDRAM can be of significant benefit to future processor architectures for this environment
 - high bandwidth memory system
 - system-on-a-chip benefits
- Challenges of eDRAM environment can be met by architectures developed for the new computing model
- Cost of eDRAM based processors remains to be seen...

References (1/6)

• C. Kozyrakis, D. Patterson, "A New Direction in Computer Architecture Research", IEEE Computer, vol. 31, no. 11, November 1998

Computer Architecture

- D. Patterson, L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface", 2nd edition, 1997, Morgan Kaufmann
- L. Hennessy, D. Patterson, "Computer Architecture: A Quantitative Approach", 2nd edition, 1995, Morgan Kaufmann

High-performance Processors

- R. E. Kessler, "The Alpha 21264 Microprocessor: Out-Of-Order Execution at 600 Mhz", Hot Chips Conference Record, August 1998
- Gary Lauterbach, "UltraSPARC-III: A 600 MHz 64-bit Superscalar Processor for 1000way Scalable Systems", Hot Chips Conference Record, August 1998
- M. Choudhury et.al, "A 300MHz CMOS Microprocessor with Multi-Media Extensions", Digest of Technical Papers, ISSCC, February 1997

References (2/6)

Embedded Processors

- M. Schlett, "Trends in Embedded Microprocessor Design", IEEE Computer, vol. 31, no. 8, August 1998
- Toru Shimizu, "The M32Rx/D A Single Chip Microcontroller With a 4MB Internal DRAM", Hot Chips Conference Record, August 1998
- J. Choquette, "Genesis microprocessor", Hot Chips Conference Record, August 1998
- F. Arakawa et.al, "SH4 RISC Multimedia Microprocessor", IEEE Micro, vol. 18, no. 2, March 1998
- T. Litch et.al, "StrongARMing Portable Communications", IEEE Micro, vol. 18, no. 2, March 1998
- L. Goudge, S. Segars, "Thumb: reducing the cost of 32-bit RISC performance in portable and consumer applications", In the Digest of Papers, COMPCON '96, February 1996

Embedded DRAM

- D. Patterson et.al, "Intelligent RAMs", Digest of Technical Papers, ISSCC, February 1997
- R. Fromm et.al., "The Energy Efficiency of IRAM Architectures", The 24th International Symposium on Computer Architecture , June 1997

References (3/6)

- K. Murakami et.al, "Parallel Processing RAM Chip with 256Mb DRAM and Quad Processors", Digest of Technical Papers, ISSCC, February 1997
- Tadaaki Yamauchi et.al., "The Hierarchical Multi-Bank DRAM: A High-Performance Architecture for Memory Integrated with Processors", Proceedings of the 19th Conference on Advanced Research in VLSI, September 1997
- J. Dreibelbis et.al, "An ASIC Library Granular DRAM Macro with Built-In Self Test", Digest of Technical Papers, ISSCC, February 1998
- T. Yabe et.al, "A Configurable DRAM Macro Design for 2112 Derivative Organizations", Digest of Technical Papers, ISSCC, February 1998
- A. Saulsbury, A. Nowatzyk, "Missing the memory wall: the case for processor/memory integration", in proceedings of the 23rd Annual International Conference on Computer Architecture, May 1996
- T. Sunaga et.al, "A parallel processing chip with embedded DRAM macros. IEEE Journal of Solid-State Circuits, vol. 31, no.10, October 1996
- D. Elliott et.al, "Computational RAM: a memory-SIMD hybrid and its application to DSP", Proceedings of the IEEE 1992 Custom Integrated Circuits Conference, May 1992

References (4/6)

- N. Bowman et.al, "Evaluation of Existing Architectures in IRAM Systems", Workshop on Mixing Logic and DRAM: Chips that Compute and Remember at ISCA '97, June 1997
- NEC Corp., "irtual Channel Memory Technology", http://www.nec.com
- Miyano S. et.al: "A 1.6Gbyte/s Data Transfer Rate 8 Mb Embedded DRAM", IEEE Journal of Solid-State Circuits, v. 30, no. 11, November 1995

Microprocessor Architecture Trends

- T. Mudge, "Strategic Directions in Computer Architecture", ACM Computing Surveys, 28(4):671-678, December 1996
- J. Crawford, J. Huck, "Motivations and Design Approach for the IA-64 64-Bit Instruction Set Architecture", In the Proceedings of the Microprocessor Forum, October 1997
- Y.N. Patt et.al.," One Billion Transistors, One Uniprocessor, One Chip", IEEE Computer, 30(9):51-57, September 1997
- M. Lipasti, L.P. Shen, "Superspeculative Microarchitecture for Beyond AD 2000", IEEE Computer, 30(9):59-66, September 1997

References (5/6)

- J. Smith, S. Vajapeyam, "Trace Processors: Moving to Fourth Generation Microarchitectures", IEEE Computer, 30(9):68-74, September 1997 S.J. Eggers et.al., "Simultaneous Multithreading: a Platform for Next-Generation Processors". IEEE MICRO, 17(5):12-19, October 1997
- L. Hammond et.al., "A Single-Chip Multiprocessor". IEEE Computer, 30(9):79-85, September 1997
- E. Waingold et.al, "Baring It All to Software: Raw Machines", IEEE Computer, 30(9):86-93, September 1997 S.J. Eggers et.al, "Simultaneous Multithreading: a Platform for Next-Generation Processors", IEEE MICRO, 17(5):12-19, October 1997
- C.E. Kozyrakis et.al., "Scalable Processors in the Billion-Transistor Era: IRAM", IEEE Computer, 30(9):75-78, September 1997

General-purpose architectures and media-processing

- T. Conte et.al, "Challenges to Combining General-Purpose and Multimedia Processors", IEEE Computer, vol. 30, no. 12, December 1997
- K. Diefendorff, P. Dubey, "How Multimedia Workloads Will Change Processor Design", IEEE Computer, 30(9):43-45, September 1997