Evaluation of Existing Architectures in IRAM Systems

Christoforos Kozyrakis, Ngeci Bowman, Neal Cardwell, Cynthia Romer and Helen Wang

> Computer Science Division University of California at Berkeley

> > http://iram.cs.berkeley.edu

Workshop on "Mixing Logic and DRAM", ISCA'97

Motivation

- Intelligent RAM promises:
 - high memory bandwidth (100x)
 - low memory latency (0.1x)
 - high energy efficiency (4x)
 - higher system integration
- Which microprocessor architecture can turn these advantages into significant application performance benefits?

IRAM SYSTEM

Evolutionary IRAM Approach

- Use an existing processor architecture: simple RISC micro, superscalar or out-of-order execution organization
- Advantages:
 - Good knowledge of how to design and implement them
 - Performance trade-offs are well understood
 - "Out of the box" solutions both for system software and applications software compatibility
 - Higher performance by tuning programs and compilers to new memory hierarchy characteristics
- <u>This work</u>: evaluate potential performance benefits of this approach

Outline

- IRAM Architectural Considerations
- Evaluation through Measurements and Extrapolations
- Evaluation through Simulation
- Conclusions

IRAM Architectural Considerations

- IRAM systems using existing DRAM technology:
 - 256Mbit DRAM 0.25µm CMOS process
 - 1/4 of die area for microprocessor
 - Up to 24MBytes of on-chip DRAM
- Memory access latency can be as low as 21ns
- Logic speed potentially 10% to 50% slower compared to conventional processors for initial implementations
- No level 2 cache necessary since on-chip DRAM can have comparable latency
- Memory bus as wide as cache line

Method I: Measurements and Extrapolation

- Execution time analysis of a simple (Alpha 21064) and a complex architecture (Pentium Pro) to predict performance of similar IRAM implementations
- Used hardware counters for execution time measurements
- Benchmarks: SPEC95Int, Mpeg_encode, Linpack1000, Sort.
- IRAM implementations: same architectures with 24MBytes of on-chip DRAM but no L2 caches; all benchmarks fit completely in on-chip memory.
- IRAM execution time model:

$$ET = \frac{computation_time}{clock_speedup} + \frac{L1miss_count*memory_access_time}{memory_access_speedup}$$

Method I: Processors Characteristics

	Alpha 21064	Pentium Pro
Pipeline	in-order	out-of-order
CPU Frequency	133 MHz	200MHz
Issue Rate	2-way	3-way
L1 Configuration	8KB I + 8KB D	8KB I + 8KB D
L1 Associativity	Direct map	4-way
L1 Access Time	22.5ns	15ns
L2 Configuration	512KB	256KB
L2 Associativity	Direct map	4-way
L2 Type	Off-chip SRAM	Off-chip SRAM
L2 Access Time	37.5ns	20ns
Memory	64MB EDO DRAM	64MB EDO DRAM
Total Latency	180ns	220ns

Execution Time Analysis of Conventional Systems

•Linpack1000 and Sort spend up to 50% of execution time in main memory

•SPEC and Mpeg_encode are CPU bound

C. Kozyrakis, Evaluation of Existing Architectures in IRAM Systems

Method I: Results

- •Equal clock speeds assumed for conventional and IRAM systems
- •Maximum IRAM speedup compared to conventional:
 - •Less than 2 for memory bound applications
 - •1.1 for CPU bound applications

Method II: Detailed System Simulations

- Used SimOS to simulate simple MIPS R4000-based IRAM and conventional architectures
- Equal die size comparison:
 - Area for on-chip DRAM in IRAM systems same as area for level 2 cache in conventional system
- Wide memory bus for IRAM systems
- Main simulation parameters:
 - On-chip DRAM access latency
 - Logic speed (CPU frequency)
- Benchmarks: SPEC95Int (compress, li, ijpeg, perl, gcc), SPEC95Fp (tomcatv, su2cor, wave5), Linpack1000

Simulated Models

	IRAM	Conventional
Pipeline	Simple in-order	Simple in-order
CPU Frequency	333 or 500 MHz	500MHz
Technology	0.25µm DRAM	0.25µm logic
L1 Configuration	64KB I + 64KB D	64KB I + 64KB D
L1 Associativity	2-way	2-way
L1 Block Size	128B	64B I + 32B D
L1 Type	On-chip SRAM	On-chip SRAM
L1 Access Time	1 CPU cycle	1 CPU cycle
L2 Configuration	-	2MB unified
L2 Associativity	-	2-way
L2 Block Size	-	128B
L2 Type	-	On-chip SRAM
L2 Access Time	-	12 CPU cycles
Memory	24MB DRAM on-chip	24MB 166MHz
Configuration		SDRAM off-chip
Memory Bus Width	128B	16B
Total Latency	21 or 33ns	116ns

C. Kozyrakis, Evaluation of Existing Architectures in IRAM Systems

Method II: Results

•Execution times normalized to basic IRAM model (333MHz, 33ns memory latency)

•IRAM models up to 40% faster than conventional

Conclusions

- IRAM systems with existing processors provide only moderate performance benefits
- High bandwidth/low latency used to speed up memory accesses but not computation
- <u>Reason</u>: existing architectures developed under the assumption of a low bandwidth memory system
- Still attractive for portable/embedded domain
 - up to 4 times more energy efficient
 - higher system integration

Towards a Revolutionary Approach

- To provide significant performance benefits IRAM systems need microprocessor architectures that turn memory bandwidth into application performance
- <u>Candidates</u>:
 - Vector microprocessor
 - Multithreading architectures
 - Multiprocessor on a chip
 - Some hybrid combination?
 - Some new idea?